
▶ School of Engineering and Computer Science

Master’s Thesis
TreeGPT: Generative pre-trained transformer for forestry applications with 3D point clouds

Course of study Master of Science in Engineering - Profile Data Science
Author Ivo Gasparini
Advisor Prof. Dr. Souhir Ben Souissi
Expert Dr. Andrea Cimatoribus (Pix4D)

August 7, 2025





I would like to thank Prof. Dr. Souhir Ben Souissi for her continued support,
especially with the project management aspects, and Dr. Andrea Cimatoribus for his
sustained interest, technical insights, and friendly in-depth exchanges about model

training behavior.
I thank my family for sustaining me through months of laborious work and for their
regular check-ins. A big thanks goes also to Lucie, who has been a constant source of

support during the office days and beyond.
Finally, I thank my colleagues Katharina and Roman from project UW for taking on
work while I was busy with my thesis, and Jean-Baptiste for introducing me to the
world of Python and for his patience and accommodating approach as a supervisor.





Abstract

Swiss forests cover 32% of the national territory and provide essential ecosystem
services, yet current inventory practices rely on costly manual field surveys with
limited spatial resolution. This study applies self-supervised learning with Point-
GPT for automated tree species classification fromLiDARpoint clouds to enable
improved forest inventories.

PointGPTextends generative pre-trained transformers to point clouds. Themethod-
ology employs a three-stage training approach: pre-training, post-pre-training,
andfine-tuning. Datasets totaling 202’149 treeswere assembled, combining newly
processed data with existing public datasets. Unlabeled pre-training data was
generated by processing public airborne laser scanning data through Segmen-
tAnyTree and creating synthetic trees, then complemented with datasets from
the literature. Labeled datasets comprised SynForest simulation data (17 species)
and the established FOR-Species20K benchmark dataset (33 species), on which
model performance was assessed.

Comprehensive experimental evaluation across approximately 300 training runs
demonstrated that pre-training achieved 37% top-1 and 72% top-5 linear probing
accuracy, with post-pre-training showing 10% performance improvements over
the pre-training baseline. The final TreeGPT model achieved 76% accuracy,
0.79 precision, 0.67 recall, and 0.67 F1-score on validation data, matching the
performance of Ensemble PointNet++, the leading point-cloud-based method on
FOR-Species20K, while using 4 times lower data resolution. Parameter-efficient
fine-tuning using spectral adapters proved ineffective (50% accuracy), while
training from scratch failed entirely, confirming benefits from self-supervised
learning. Experiments showed that the inclusionof fully synthetic data improved
model performance.

Thiswork explores the potential of applying generative pre-trained transformers to
automated tree species classification. Significant opportunities for improvement
remain, particularly training high-capacity models on high-resolution LiDAR data
and subsequently applying them to lower-resolution data. The self-supervised
methodology contributes towards establishing a foundationmodel approach in
forestry vision tasks.

Keywords: self-supervised learning, tree species classification, LiDAR, point clouds,
PointGPT, transformer, forest inventory, 3D computer vision.





Contents

1 Introduction 1
1.1 Context and opportunities . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objectives and structure . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background and related work 5
2.1 Overview of swiss forests . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 LiDAR technology . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Forest inventory from LiDAR point clouds . . . . . . . . . . . . . . 9
2.4 Tree species classification from LiDAR point clouds . . . . . . . . 10
2.5 Self-supervised learning . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Parameter-efficient fine-tuning . . . . . . . . . . . . . . . . . . . 12

3 Methodology 15
3.1 Overall research design . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Project management . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Information sources . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Infrastructure and hardware . . . . . . . . . . . . . . . . . . . . . 18
3.5 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.1 PointGPT . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5.2 PointGST . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6.1 Custom datasets . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6.2 Literature dataset . . . . . . . . . . . . . . . . . . . . . . . 32
3.6.3 Benchmark dataset . . . . . . . . . . . . . . . . . . . . . . 33
3.6.4 Dataset summary . . . . . . . . . . . . . . . . . . . . . . . 37

4 Results and discussion 39
4.1 Pipelines implementation . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Training runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.2 Pre-training . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.3 Post-pre-training . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.4 Fine-tuning . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vii



Contents

4.3 Best model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Conclusions 71

Bibliography 75

List of Figures 85

List of Tables 87

Listings 89

Glossary 91
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

viii



1 Introduction

1.1 Context and opportunities

Switzerland’s forests cover approximately 1.32 million hectares, representing 32%
of the total land area as of 2023 [1], [2]. Swiss forests provide numerous ecosys-
tem services [3]: they produce timber, offer protection against natural hazards,
contribute significantly to biodiversity and carbon storage, and serve as valuable
recreational spaces. The swiss forestry sector operates within a framework of
sustainable management principles, anchored in multifunctional forest manage-
ment [4]. Systematic monitoring of this valuable resource through instruments
such as the Swiss National Forest Inventory (Landesforstinventar, [1]) provides
essential data for evidence-based management decisions at federal and cantonal
levels, including the allocation of federal subsidies totaling 451million CHF for the
period 2025-2028 [5]. Despite increasing integration of remote sensing approaches
[6], forest inventories still largely rely on costly manual field surveys conducted
on sparse grids of sample plots, providing limited spatial detail. At the stand and
individual tree level, management decisions are often based on incomplete or
absent data, leading to suboptimal outcomes that can impact both the fulfillment
of forest functions and the economic viability of swiss forest enterprises — 41%
operated at a deficit in 2022 [7].

Under the paradigm of Forestry 5.0 [8], the forestry sector can use more advanced
technologies to improve forest management and operations. This transformation
becomes increasingly relevant given the challenges posed by climate change.
Advances in remote sensing technologies and data analysis techniques offer the
possibility to extract comprehensive information from forest ecosystems [9]. By
applying 3D computer vision to LiDAR (Light Detection and Ranging) data, numer-
ous applications become feasible, ranging from silvicultural metrics extraction
(including tree height, diameter at breast height, crown and trunk volumes, and
tree species identification) to the creation of digital forest twins [10]. Detailed for-
est inventories could potentially be automated [11]–[14], providing comprehensive
data at high spatial resolution. This capability enables more precise and targeted
management across scales, from individual trees (precision forestry, [15]) and
stands to entire national forest extents. Existing instruments such as the Swiss
National Forest Inventory could be significantly enhanced by higher-precision
inventories, improving both public subsidy allocation and forestry operation ef-
fectiveness. The declining costs of LiDAR data acquisition, driven partly by the

1



1 Introduction

expanding autonomous vehicle industry, further support this technological shift.
Public entities such as Swisstopo in Switzerland are implementing comprehen-
sive national LiDAR acquisition campaigns while providing free data access [16],
creating favorable conditions for widespread further adoption of these techniques.

1.2 Research problem

Despite promising advances, automated extraction of silvicultural metrics from
LiDAR point clouds and automated full forest inventorying have not yet achieved
large-scale practical implementation. Tree species identification represents one of
the primary challenges in this domain. Multiple approaches have been explored in
the literature (see [17] for a comprehensive overview). Thesemethods utilize either
LiDAR data alone or combine LiDAR with RGB or hyperspectral photogrammetry
[18]. Methodological approaches include classical machine learning algorithms
such as random forests and support vector machines based on extracted features,
2D vision models applied to point cloud slices [19], and deep learning models
applied directly to point clouds (see section 2.4).

Self-Supervised Learning (SSL) is an established technique in deep learning that
enables training models on large quantities of unlabeled data through various
pretext tasks [20]. Through these pretext tasks, models acquire general knowledge
about the data that can subsequently be transferred to downstream tasks via fine-
tuning or transfer learning. Recent developments have extended this technique
to point clouds [21]–[24]. The abundance of available unlabeled data facilitates the
application of transformers [25], which have become the dominant architecture in
deep learning, including computer vision [26]. This dominance has been driven
by the success of models such as the Generative Pretrained Transformer (GPT)
[27], [28] in natural language processing. Transformers exhibit superior scaling
behavior [29], enabling them to outperform other architectures by increasing
dataset and model size.

To thebest of the author’s knowledge, SSLhas not yet been explored for tree species
classification using purely point clouds. While existing approaches have applied
SSL to individual tree segmentation [30], others rely on combinations of data
sources for species classification [31], [32]. Implementing SSL using a transformer
architecture specifically for tree species classification while leveraging the large
amounts of freely available unlabeled LiDAR data represents a significant research
gap.

1.3 Objectives and structure

Considering what has been outlined above, the objectives of this work are:

2



1.3 Objectives and structure

▶ Implement a transformer architecture for tree species classification on
LiDAR point clouds as downstream task.

▶ Collect and create forest point cloud datasets for the pre-training and the
downstream task.

▶ Develop pipelines for point cloud data processing, model SSL pre-training,
fine-tuning, and inference.

▶ Evaluate and compare the performance of the models against baseline ap-
proaches.

▶ Conduct ablation studies to understand the impact of different pipeline
implementations, training strategies, and architectural choices on computa-
tional efficiency and model performance.

This work aims to advance SSL in 3D computer vision on point clouds for forestry
applications such as tree species recognition.

The thesis is organized as follows. Section 2 reviews the relevant literature on
LiDAR technology, forest inventory applications, and point-based deep learning
methods. Chapter 3 presents the research design, the chosen SSL architectures,
dataset development, and practical implementation. Chapter 4 reports and dis-
cusses the pipeline implementations and the experimental results across pre-
training, post-pre-training, and fine-tuning stages. Chapter 5 provides provides a
summary and concluding remarks on the potential of transformer-based SSL for
automated tree species classification.

3





2 Background and related work

2.1 Overview of swiss forests

The swiss National Forest Inventory [1], on which the following data is based,
currently employs around 6,600 sampling areas arranged at intervals of 1.4 km.
To compensate for the sampling error inherent in this sampling density, the data
are evaluated using estimation procedures based on aerial images and vegetation
height models derived from LiDAR data.

swiss forests extend over around one third of the national surface. The forest area
has been increasing for the last 150 years, with a 2.4% increase between the third
and fourth National Forest Inventories (LFI3: 2004 - 2006; and LFI4: 2009 - 2017).
Thedistributionof forest coverage varies across the country’s geographical regions,
ranging from41%coverage in the Juramountains to 24% in theMittelland, with the
Voralpen, Alps, and Alpensüdseite regions maintaining 35%, 27%, and 54% forest
coverage respectively. swiss forests contain substantial timber resources, with a
growing stock that amounts to 450 million m3 or 374 m3 per hectare, representing
one of the highest forest densities in Europe.

The forest landscape consists primarily of coniferous species, which constitute
69% of the total forest volume, while deciduous species account for the remaining
31%. Picea abies is the dominant species, representing 44% of the total forest
volume, followed by Fagus sylvatica at 17% and Abies alba at 15%. Approximately
42% of swiss forest stands are essentially dominated by coniferous species, while
24% are dominated by deciduous species. Forest stand diversity is increasing:
mixed stands are becoming more prevalent, with monospecific pure stands now
representing only 17% of forest area, while 48% of stands contain two to three tree
species and 34% contain more than three species.

When considering stem count (number of individual tree trunks), the species
distribution is heavily skewed toward a few dominant species (fig. 2.1 and table 2.1).
The top 3 species account for 65.4% of all stems, the top 5 species represent 75.7%,
and the top 10 species comprise 88.2% of the total stem count. Picea abies remains
the dominant species with 37.0% of all stems, followed by Fagus sylvatica at 17.8%,
but Abies alba drops to 10.6% of total stem count. Discrepancies like these indicate,
for example, thatAbies alba trees are on average bigger compared to Picea abies and
Fagus sylvatica, suggesting the presence of older, more mature Abies alba stands.

5



2 Background and related work

Species Count % Species Count %

Picea abies 183 902 37.00 Populus tremula 1250 0.25

Fagus sylvatica 88 523 17.81 Acer platanoides 1217 0.24

Abies alba 52 794 10.62 Shrubs 1185 0.24

Larix decidua/L. kaempferi 27 100 5.45 Acer campestre 1042 0.21

Acer pseudoplatanus 24 092 4.85 Pseudotsuga menziesii 868 0.17

Fraxinus excelsior 21 760 4.38 Acer opalus 820 0.16

Pinus sylvestris 11 519 2.32 Ilex aquifolium 460 0.09

Castanea sativa 10 937 2.20 Juglans regia 304 0.06

Betula pendula 10 102 2.03 Prunus padus 226 0.05

Alnus incana 7601 1.53 Populus nigra 202 0.04

Quercus petraea 5788 1.16 Fraxinus ornus 198 0.04

Pinus cembra 5720 1.15 Pinus nigra 185 0.04

Pinus mugo arborea 4606 0.93 Other deciduous 171 0.03

Sorbus aria 3784 0.76 Populus alba, P. canescens 161 0.03

Tilia cordata 3624 0.73 Laburnum anagyroides 107 0.02

Salix sp. 2772 0.56 Quercus rubra 96 0.02

Sorbus aucuparia 2732 0.55 Quercus cerris 84 0.02

Prunus avium 2707 0.54 Betula pubescens 82 0.02

Ostrya carpinifolia 2363 0.48 Populus sp. 79 0.02

Quercus robur 2196 0.44 Sorbus torminalis 76 0.02

Carpinus betulus 2129 0.43 Alnus viridis 70 0.01

Ulmus glabra 1903 0.38 Pinus strobus 56 0.01

Alnus glutinosa 1863 0.37 Malus sylvestris 50 0.01

Tilia platyphyllos 1663 0.33 Ulmus minor 40 0.01

Quercus pubescens 1651 0.33 Other conifers 34 0.01

Taxus baccata 1415 0.28 Aesculus hippocastanum 25 0.01

Pinus mugo prostrata 1375 0.28 Pyrus communis 14 0.00

Robinia pseudoacacia 1256 0.25

Table 2.1: Tree species distribution of swiss forests based on stem count (thousands) [1].

Figure 2.1: Tree species distribution of swiss forests based on stem count (thousands) [1].

6



2.1 Overview of swiss forests

2.2 LiDAR technology

Light Detection and Ranging (LiDAR) is an active remote sensing technology that
measures distances by emitting laser pulses and calculating the time-of-flight for
reflected signals to return to the sensor [33]. The system operates on the principle
that distance equals the speed of light multiplied by half the round-trip travel
time:

d =
c · t
2

(2.1)

where d is the distance to the target, c is the speed of light (3 × 108 m/s), and
t is the round-trip travel time. Modern LiDAR systems typically employ near-
infrared wavelengths (1064 nm or 1550 nm) that are eye-safe and provide optimal
atmospheric transmission.
The core components include a laser transmitter, receiver optics, photodetector,
high-precision timing electronics, and positioning systems (GPS/IMU). When a
laser pulse encounters a surface, a portion of the energy reflects back to the sensor.
As visible in fig. 2.2, the intensity and timing of multiple returns from a single
pulse enable detailed characterization of surface features and vegetation structure
[34]. Full-waveform systems additionally record the complete continuous return
signal, providing even more detailed information [35], [36].

Figure 2.2: Principle of multiple return LiDAR systems. Figure taken from [37].

Point positioning accuracy depends on precise sensor location and orientation.
GPS provides absolute positioning while Inertial Measurement Units (IMU) record
pitch, roll, and yaw angles. Post-processing algorithms integrate these data
streams to calculate 3D coordinates for each laser return, typically achieving
centimeter to millimeter-level precision under optimal conditions [38].

7



2 Background and related work

Each point in a LiDAR point cloud contains multiple attributes. Beyond the 3D
spatial location (X, Y, Z), most points will have an intensity value, representing the
amount of light energy recorded by the sensor, and return information (fig. 2.2),
including return number (first, second, etc.) and total number of returns per pulse.
Additional attributes may include RGB color values when LiDAR is combined with
optical sensors, GPS timestamps, edge-of-flight line flags, and user-defined fields
for specific applications.
LiDAR systems can be deployed on various platforms, each with distinct charac-
teristics and applications (table 2.2):

▶ Airborne Laser Scanning (ALS): LiDAR systems that operate above the
forest canopy, typically mounted on manned aircraft flying at altitudes of
hundreds of meters to several kilometers. They allow for efficient coverage
of extensive territories with homogeneous point clouds.

▶ Unmanned Laser Scanning (ULS): LiDAR systems carried by unmanned
aerial vehicles (UAVs/drones) that can be categorized as either MLS or ALS
depending onwhether the UAV flies under or above the forest canopy during
data collection [39].

▶ Mobile Laser Scanning (MLS): LiDAR systems that move under the forest
canopy, including ground-based systems mounted on vehicles or handheld
(Personal Laser Scanners, PLS). These systems capture high-density point
clouds with significant variation in range data due to proximity to targets.

▶ Terrestrial Laser Scanning (TLS): Stationary ground-based LiDAR systems
that provide the highest point densities and precision. Operating from fixed
positions under the canopy, TLS systems excel at detailed characterization
of small areas with minimal distance variation.

Parameter Airborne Laser
Scanning (ALS)

Unmanned
Laser Scanning
(ULS)

Mobile Laser
Scanning (MLS)

Terrestrial
Laser Scanning
(TLS)

Point
density

Up to few
hundreds
pts/m2

Up to few
thousands
pts/m2

Up to few
thousands
pts/m2

Up to tens or
hundred of
thousands
pts/m2

Accuracy 5–15 cm vertical,
10–25 cm
horizontal

1–5 cm vertical,
2–10 cm
horizontal

5–10 mm 1–5 mm

Operating
range

Hundreds of m
to few km

Tens to
hundreds of m

Up to hundreds
of m

Up to hundreds
of m

Coverage
rate

Up to hundreds
of km2/h

Up to a few
km2/h

A few ha/h Single scans

Table 2.2: Comparison of LiDAR platform characteristics. From [40], p.54, adapted.

8



2.3 Forest inventory from LiDAR point clouds

2.3 Forest inventory from LiDAR point clouds

In the context of forest inventories, three main tasks applied to point clouds are
particularly relevant (fig. 2.3):

▶ Instance segmentation: this task divides the point cloud into distinct in-
dividual object instances. In forestry applications, this approach enables
the delineation of individual trees within larger forest point clouds [30],
[41]–[43].

▶ Semantic segmentation: this process assigns semantic labels to each in-
dividual point within the cloud. In forest environments, this technique
distinguishes between different vegetation components, enabling the sepa-
ration of leaves, branches, and trunks [44], [45].

▶ Point cloud classification: this task assigns a single label to an entire point
cloud based on its overall characteristics. In forestry, this can be applied to
identify tree species or to assess their health status (see section 2.4).

Instance and semantic segmentation are frequently addressed jointly due to their
complementary nature [11], [46], [47]. Several downstream applications build
upon these foundational tasks. Point cloud reconstruction and completion tech-
niques [48] infer missing portions of the dataset to create complete tree models.
Trunk Diameter at Breast Height (DBH) estimation [49], [50] uses semantically
and instance-segmented stems, typically employing ellipse fitting algorithms
for precise measurements. Additional regression tasks encompass volume and
biomass estimations, which predict continuous variables directly frompoint cloud
features. The integration of these extracted metrics enables the construction of
comprehensive forest inventories with detailed tree-level information.

Figure 2.3: Overview of the main tasks applied to point clouds for forest inventory. Figure taken
from [15].

9



2 Background and related work

2.4 Tree species classification from LiDAR point clouds

Various prediction techniques have been applied to tree species recognition from
LiDAR point clouds (fig. 2.4 and fig. 2.5). Machine Learning (ML) models rely
heavily on feature engineering, the process of creating descriptive features that
capture relevant information while reducing data complexity. CommonML ap-
proaches include Random Forest (RF) [51], Support Vector Machine (SVM) [52],
Multi-layer Perceptron (MLP) [53], and XGBoost [54]. Compared to deep neural net-
works, these models offer faster computation and can learn effectively from small
datasets. However, their performance depends critically on feature selection.
Features are typically derived from geometric descriptions of point neighbor-
hoods, defined either byfixed distance or k-nearest neighbors. For a neighborhood
NR around a point, a covariance matrix C is computed as:

C(NR) =
1

N

∑
p∈NR

(p− p̄)(p− p̄)T (2.2)

where p̄ represents the neighborhood centroid. The eigenvectors e1, e2, e3 ∈ R3

and eigenvalues λ1 ≥ λ2 ≥ λ3 ∈ R of this covariance matrix are used to calculate
shape-descriptive features. Typical features include linearity, planarity, sphericity,
verticality, and anisotropy [55] at single ormultiple scales [56]. Tree-based features
are also commonly employed, including aggregations of geometric features and
measurements such as height and convex hull volume [31]. More specialized ap-
proaches include Qualitative Structure Model (QSM), which represents stems and
branches as a hierarchical set of cylinders to approximate their actual geometry
[57].
Deep Learning (DL) approaches have emerged as an alternative to traditional
machine learningmethods (fig. 2.4). The promising performance of deep learning
methods has driven increased research activity in tree species classification and
other forest inventory tasks (fig. 2.5).

Figure 2.4: Number of papers using machine
learning and deep learning meth-
ods on TLS forest point clouds
over time. Figure from [15].

Figure 2.5: Number of papers per task (sec-
tion 2.3) on TLS forest point
clouds over time. Figure from
[15].

10



2.3 Forest inventory from LiDAR point clouds

DL models automatically learn feature representations from data, eliminating
the need for manual feature engineering. However, this capability comes with
increased computational complexity and typically requires larger datasets for
effective training. Processing point cloud data presents challenges for DL architec-
tures due to several characteristics of this data format. Point clouds lack inherent
ordering, requiring all processing operations to be permutation-invariant, mean-
ing that identical point sets in different arrangements must produce consistent
outputs. This is different from other datamodalities such as sequential text data or
structured image grids. Additionally, point clouds exhibit irregular sampling den-
sities and variable point counts per sample, further complicating neural network
processing.
To address these challenges, several methodological approaches have been de-
veloped [58]. Many of them involve converting the point cloud to other more
suitable formats. These include 2D projections of multiple viewpoints of the point
cloud, and voxel grids that discretize 3D space into regular cubic cells (fig. 2.6).
These methods typically rely on different flavors of Convolutional Neural Net-
work (CNN) architectures including YOLO [59] and ResNet [60], and have been
adapted for tree analysis [19]. For voxel-based representations, 3D CNNs such as
VoxNet [61] and MinkowskiNet [62] have been developed and used in forestry [42].
MinkowskiNet addresses the sparsity in voxelized point clouds, where themajority
of voxels remain empty, through sparse convolution operations. Alternatively,
point-based methods process point clouds directly without intermediate transfor-
mations [21], [63]–[66]. While this approach remains less developed compared to
other modalities, the field is in expansion.

Figure 2.6: A voxelized point cloud of a tree. Figure taken from [67].

11



2 Background and related work

2.5 Self-supervised learning

Self-supervised learning (SSL) is a training paradigm in whichmodels learn useful
representations from unlabeled data by solving auxiliary tasks, known as pretext
tasks, that do not require manual annotations [68]. SSL has proven very important
for scaling deep learning in domains like vision and language by leveraging the
abundance of raw data. Unlike supervised learning, which optimizes performance
on a fixed labeled dataset, SSL focuses on learning general-purpose features that
transfer well to a variety of downstream tasks.

Modern SSL methods are commonly divided into four families, each defined by a
different learning objective.

▶ In contrastive learning, samples are contrasted against each other, and those
belonging to the same distribution are pushed towards each other in the
embedding space. In contrast, those belonging to different distributions are
pulled against each other.

▶ Self-distillation methods train a model to match the output of a second copy
of itself, which helps stabilize learning.

▶ Correlation-based approaches involve manipulating feature dimensions to
be as uncorrelated as possible, so that the learned representations are more
diverse and useful for downstream tasks.

▶ Masked modeling methods, inspired by BERT [21], involve hiding parts of
the input data and training the model to predict the missing content, such
as reconstructing masked point patches in a point cloud [23].

GPT-style architectures are a type of maskedmodeling SSL, since they use masked
token prediction to train the model and to learn information-rich geometric fea-
tures. The pre-trained models can then be fine-tuned (which usually involves
re-training the model) or used as backbone to do transfer learning (which mostly
keeps the bigger part of the parameters frozen as feature extractors).

2.6 Parameter-efficient fine-tuning

Parameter-Efficient fine-Tuning (PEFT) refers to adaptation techniques that mod-
ify only a small subset of parameters in pre-trained models rather than updating
all model weights during downstream task training [69]. Traditional fine-tuning
requires updating all parameters of large pre-trained models, leading to big com-
putational costs and storage requirements, particularly when adapting to multi-
ple downstream tasks. PEFT methods address these limitations by introducing
lightweight, trainable modules or selecting specific parameter subsets for opti-
mization while keeping the majority of pre-trained weights frozen.

12



2.6 Parameter-efficient fine-tuning

Common PEFT approaches include adapter modules that insert small neural
networks between existing layers [70], low-rank adaptation techniques that de-
compose weight updates into low-rank matrices [71], and prompt-based methods
that prepend learnable tokens to model inputs [72], like a Classification (CLS)
token for classification tasks. These techniques typically achieve comparable per-
formance to full fine-tuning while requiring orders of magnitude fewer trainable
parameters, making them particularly useful for large-scale model deployment
and multi-task scenarios.

13





3 Methodology

3.1 Overall research design

This work investigated SSL with transformer architectures for tree species clas-
sification from LiDAR point clouds through five principal phases (fig. 3.1): ar-
chitecture selection and analysis, dataset development and selection, pipeline
implementation, training optimization, and performance evaluation.

The initial phase involved identifying state-of-the-art SSL approaches for point
clouds, leading to the selection of PointGPT [24] (section 3.5.1) as the foundation
architecture, as it represents one of the leading architectures on 3D point cloud
classification benchmarks according to Papers with Code [73]. Its development
into PointGST [74] (section 3.5.2) was also included, given that this architecture
promises superior fine-tuning performance while being considerably more ef-
ficient through adapter layers. This selection was followed by comprehensive
analysis and experimentation with both codebases to build the understanding
and familiarity necessary for experimental investigation.

The dataset development phase addressed the challenge of collecting sufficient
labeled and unlabeled point cloud data for effective SSL training and fine-tuning.
Three datasets were assembled to support the training pipelines:

▶ Customdataset (section 3.6.1): This dataset comprises two sub-datasets with
distinct purposes. First, an unlabeled pre-training dataset was generated
by segmenting public ALS point clouds from Canton Neuchâtel using the
SegmentAnyTree architecture [42] and expanded with synthetic tree data
created through the SimpleSynthTree framework [75]. Second, a labeled
post-pre-training dataset was developed using SynForest [76].

▶ Literature dataset (section 3.6.2): This compilation consists of six datasets
obtained from the literature, acquired from different LiDAR platforms and
lacking tree species annotations. The dataset was used to expand the custom
pre-training dataset.

▶ Benchmark dataset (section 3.6.3): FOR-Species 20K [77] was selected as the
fine-tuning and benchmark dataset due to its explicit focus on tree species
classification tasks.

The pipeline implementation phase involved developing training loops for distinct
training stages and implementing performance optimizations.

15



3 Methodology

The specific implementations and optimizations are detailed in section 4.1. The
training stages were:

▶ Pre-training: SSL pre-training through a generative task, specifically next
patch prediction of point cloud sequences (section 3.5.1).

▶ Post-pre-training: A combined training approach where the model simul-
taneously continues generative next patch prediction and performs tree
species classification on labeled data.

▶ Fine-tuning: Both full fine-tuning and adapter-based fine-tuning (sec-
tion 3.5.2) for tree species classification. Experiments also included main-
taining the parallel generative task during fine-tuning.

Training optimizations included grid searches to identify optimal training parame-
ters and dataset andmodel configurations. Additional optimizations encompassed
weighted loss functions, weighted sampling strategies, and validation schemas
incorporating linear probing for pre-training feature evaluation to ensure appro-
priate adaptation to the downstream classification task.
Performance evaluation was conducted through experiments across different
model scales, enabling assessment of both the effectiveness of the SSL approach
and the scalability of the proposed methodology (section 4.2).

Figure 3.1: Flowchart of the research process.

16



3.2 Project management

3.2 Project management

The project management organized the phases outlined in fig. 3.1 into main activi-
ties (work packages) distributed across 9 months (fig. 3.2). As a part-time student
with 50% work obligations, the author required more than one semester to com-
plete the project. Over the project duration, it was possible to reduce the work
percentage, allowing July to be fully dedicated to the thesis.

Figure 3.2: Project schedule of this master’s thesis.

Phases 2 and 3 proceeded largely in parallel due to their high interdependence.
These phases also consumed the majority of the project timeline. Technical
challenges encountered in both phases, along with problems related to diverging
training runs during pre-training (see section 4.2.2), extended phases 2 and 3 by
approximately 2 months beyond the original plan. The main solutions adopted
for the technical challenges are outlined in section 3.4. Consequently, phase 5 and
report writing were delayed accordingly.

This delaywas hardly avoidable, as significant results could not have been obtained
without resolving these technical challenges. This represented the primary project
management challenge, as the feasibility of completing the entire project within
the given timeframe became uncertain at a certain point.

Keymilestones included an expert meeting to assess preliminary results in month
7 and the final delivery and presentation in early August. There was ongoing
exchange with the advisor throughout the project, while the expert became more
involved frommonth 6 onward.

17



3 Methodology

3.3 Information sources

Background literature was gathered fromWeb of Science, Google Scholar, Seman-
tic Scholar, and arXiv to establish understanding of forestry applications of 3D
computer vision on point clouds, point-based deep learning methodologies, trans-
former architectures, and self-supervised learning techniques. Reference tracing
was employed extensively to identify additional relevant sources. Web searches
were conducted to locate industry reports and technical documentation. Papers
with Code and GitHub repositories were consulted to identify state-of-the-art
implementations and available codebases.

3.4 Infrastructure and hardware

The experimental infrastructure comprised multiple computing environments
for different phases of the research. Initial experimentation and research were
conducted on a personal laptop, with the first pipelines implemented to support
CPU operation to enable preliminary testing and development.

The primary computational work was performed on two Linux servers provided
by BernUniversity of Applied Sciences (BFH). The newer server, designated "Apex",
featured two NVIDIA A100 GPUs with 82 GB RAM each, though institutional poli-
cies restricted usage to a single GPU per session. The older server, "DGX Station",
housed four NVIDIA V100 GPUs with 32 GB RAM each and was utilized extensively
in distributed mode, achieving higher training speeds despite the older hardware.

Server access was managed through SSH connections and the JupyterLab IDE
interface, with all operations executed within Docker containers. Environment
configuration utilized Conda package management running through pyenv for
Python version control. Resource management presented challenges throughout
the project, primarily manifesting as CUDA out-of-memory errors and server
disk space limitations. Command-line monitoring tools including htop and ncdu
were employed extensively to address these bottlenecks. A notable issue involved
JupyterLab’s hidden trash folder accumulating over 700 GB of data within contain-
ers due to persistence across IDE sessions.

Frameworks used for custom dataset creation required custom implementation
solutions due to system constraints. SegmentAnyTree [42] (section 3.6.1) necessi-
tated execution within a nested container using udocker [78] to accommodate the
multi-user environment without root privileges. The SynForest [76] (section 3.6.1)
source code required modifications to convert Slurm [79] job scheduling for High
Performance Computing (HPC) operations to standard execution and to remove
containerized execution of Helios++ [80], which was subsequently installed di-
rectly on the machine to circumvent privilege restrictions.

Themain codebase utilizes PyTorch as the deep learning framework, with external

18



3.5 Models

dependencies evolving throughout the project duration. Initial implementations
employed PyTorch3D [81] for Farthest Point Sampling (FPS), but compatibility is-
sueswith newer Python versions and dependencies necessitated compilation from
source due to outdated community-maintained wheels. PyTorch3Dwas eventually
replaced with CUDA kernels from the PyTorch PointNet++ codebase [64] to resolve
dependency conflicts. Additional dependencies, including accelerated Chamfer
Distance implementations, required source compilation and encountered com-
patibility issues with Apex’s system environment. These challenges were resolved
by establishing a complete environment with all compilations on DGX Station and
replicating it on Apex using Conda-Pack [82], which creates portable archives of
conda environments for installation on other systems.

Version control and backup were managed through Git with a private repository
hosted on GitHub. Training run logging initially utilized offline TensorBoard, the
default logging solution in the PointGPT codebase, but was subsequently migrated
to Weights and Biases.

3.5 Models

3.5.1 PointGPT

PointGPT [24] extends the concept of Generative Pre-trained Transformers (GPT)
to point clouds, addressing three fundamental challenges:

1. Disorder properties of point clouds

2. Low information density compared to natural language

3. Gaps between generation and downstream tasks

The architecture employs an auto-regressive generation task to pre-train a trans-
former on point cloud sequences. PointGPT consists of three main components:
a point cloud sequencer that converts unordered point clouds into ordered se-
quences, an extractor-generator based transformer decoder with dual masking
strategy, and apredictionhead for auto-regressive generation. The overall pipeline
processes a point cloudX = {x1, x2, ..., xM} ⊆ R3 through sequential patch pre-
diction.

In PointGPT, tokens represent embedded point groups (or patches). Each token
encodes the geometric properties of a local neighborhood of group size k, tipically
32 points. The sequencer converts the unordered point cloud into ordered token
sequences through a three-stage process (fig. 3.3). First, point group partitioning
samples n center points (C) using Farthest Point Sampling (FPS) and constructs
point groups using K-Nearest Neighbors (KNN):

19



3 Methodology

C = FPS(X), C ∈ Rn×3 (3.1)
P = KNN(C,X), P ∈ Rn×k×3 (3.2)

FPS is a deterministic downsampling algorithm that iteratively selects points to
maximize spatial coverage. Beginning with an initial seed point, the algorithm
progressively selects points that maintain maximum distance from all previously
chosen points:

cj+1 = arg max
x∈X\S

min
s∈S

∥x− s∥2 (3.3)

where S = {s1, s2, ..., sj} represents the set of already selected center points, cj+1

denotes the next center point to be selected,X denotes the original point cloud,
and ∥ · ∥2 indicates the Euclidean distance.

Following center point selection, KNN constructs local point groups around each
center. For each center point ci, KNN identifies the k closest points from the
original point cloudX based on Euclidean distance.

This creates n groups, where each group Pi contains k points representing a local
neighborhood around center pointCi. To establish sequential order, center points
are encoded into one-dimensional space using Morton code and sorted along
order O accordingly, obtaining sorted centers Cs and sorted point groups P s

(patches):

O = argmax(MortonCode(C)), O ∈ Rn×1 (3.4)
Cs, P s = C[O], P [O], Cs ∈ Rn×3, P s ∈ Rn×k×3 (3.5)

Morton codes convert 3D point coordinates into a single number that encodes
spatial position. The code is generated by combining the binary representations
of the (x, y, z) coordinates.

Binary numbers have bit positions, where the leftmost bit is the most signifi-
cant (contributing the largest value) and the rightmost bit is the least significant
(contributing the smallest value). For example, in the binary number 1012, the left-
most bit (position 2) contributes 1× 22 = 4, the middle bit (position 1) contributes
0× 21 = 0, and the rightmost bit (position 0) contributes 1× 20 = 1, yielding the
decimal value 5. For an example point at coordinates (2, 1, 3), each coordinate
is first converted to binary with equal bit lengths: x = 2 = 0102, y = 1 = 0012,
z = 3 = 0112. The Morton code is constructed by combining bits from all three
coordinates:

20



3.5 Models

▶ Position 2 (most significant): z2 = 0, y2 = 0, x2 = 0

▶ Position 1 (middle): z1 = 1, y1 = 0, x1 = 1

▶ Position 0 (least significant): z0 = 1, y0 = 1, x0 = 0

The resulting Morton code becomes z2y2x2z1y1x1z0y0x0 = 0001011102, which
converts to the decimal value 46. Each center point ci is assigned a Morton code
through this process, and the centers are subsequently sorted by these values to
create ordered sequences Cs and P s. In the actual PointGPT codebase [83], Mor-
ton codes are replaced by a nearest-neighbor selection algorithm that iteratively
selects the closest unvisited center point at each step, though this substitution is
not disclosed in the published paper.

Figure 3.3: Processing of a input point cloud of a tree of the pre-training dataset in PointGPT.

Eachpoint group is processedby aPointNet [63] network toproduce aD-dimensional
feature vector, which is the token T :

T = PointNet(P s), T ∈ Rn×D (3.6)

with coordinates normalized relative to center points. The resulting tokens T =
{T1, T2, ..., Tn} represent embedded local geometric features, with each token
Ti ∈ RD encoding the geometric properties of a point group P s

i . With this, the the
disorder challenge is addressed.

To deal with the low information density of point clouds, the transformer decoder
incorporates a dual masking strategy. This strategy additionally randomly masks

21



3 Methodology

a proportion of attending preceding tokens during pre-training. The self-attention
mechanism with dual masking operates on tokens, where each token can attend
to a subset of preceding tokens:

SelfAttention(T ) = softmax
(
QKT

√
D

− (1−Md) · ∞
)
V (3.7)

whereQ,K, V are query, key, and value matrices derived from T , andMd is the
dual mask with masked locations set to 0 and unmasked locations set to 1.

When masking attending tokens, the system controls which other tokens each
token can attend to. In practical terms, when token 3 (representing patch 3) would
normally attend to token 1 and token 2, dual masking might force it to attend only
to token 1, thereby reducing the available contextual information and encouraging
the model to learn more discriminative features.

The architecture separates representation learning from generation through dis-
tinct extractor and generator modules (fig. 3.4). The extractor is composed of
transformer decoder blocks, learning latent representations. To learn global struc-
ture information, sinusoidal positional encodings are added to the group centers
[25], obtaining the Absolute Positional Encodings (APE). The generator contains
fewer transformer blocks and incorporates Relative Direction Prompts (RDP) to
give the model information about group order and direction:

RDPi = PE
(

Cs
i+1 − Cs

i

∥Cs
i+1 − Cs

i ∥2

)
, i ∈ {1, ..., n′} (3.8)

where n′ = n− 1 and PE denotes positional encoding. The extractor-generator
procedure is formulated as:

T = Extractor(T + APE), T ∈ Rn×D (3.9)

T g = Generator(T1:n′ + RDP), T g ∈ Rn′×D (3.10)

where T1:n′ represents the encoded feature vectors output by the extractor, and
T g the predicted encoded point group from the generator.

The input sequences are constructed differently for pre-training and fine-tuning
phases (fig. 3.4). During pre-training, the extractor uses a Start Of Sequence (SOS)
token with APE, while the generator uses RDP instead. Extractor sequence:

Text pre = [SOS+ SOSPE,T1 + APE1,T2 + APE2, . . . ,TN−1 + APEN−1] (3.11)

For downstream classification tasks, learnable Classification (CLS) tokens (sec-
tion 2.6) are introduced to the pre-trained model. Extractor sequence:

22



3.5 Models

Text cls = [CLS+ CLSPE,T1 + APE1,T2 + APE2, . . . ,TN + APEN ] (3.12)

The SOS token provides generative context during pre-training, while CLS tokens
encapsulate global point cloud properties useful for classification. The group
tokensTi contain geometric features fromPointNet, APE encodes spatial ordering
from Morton sequencing, and RDP provides directional information for auto-
regressive generation.

During generation, the prediction head consists of a two-layer MLP that projects
generator tokens to coordinate space, predicting the content of subsequent point
groups P pd:

P pd = Reshape(MLP(T g)), P pd ∈ Rn′×k×3 (3.13)

When predicting "the next token", the model predicts the features of the next local
point group in the spatial sequence, rather than individual points. This enables
themodel to learnmeaningful spatial relationships and geometric patterns across
local neighborhoods.

The generation loss combines ℓ1 and ℓ2 forms of Chamfer Distance (CD). CD
measures similarity between two point clouds by quantifying how well they align
with each other. The distance operates on a simple principle: for every point
in one cloud, it finds the closest point in the other cloud and measures their
separation. With n ∈ {1, 2}:

Lg
n =

1

|P pd|
∑

a∈P pd

min
b∈P gt

∥a− b∥nn +
1

|P gt|
∑
b∈P gt

min
a∈P pd

∥a− b∥nn (3.14)

where |P pd| is the cardinality of the set P and ∥a− b∥nn is the Ln distance between
a and b. The total generation loss is Lg = Lg

1 + Lg
2.

23



3 Methodology

Figure 3.4: Flow of the input tokens in the PointGPT transformer.

To address the third fundamental challenge outlined in the beginning of this sec-
tion, PointGPT incorporates a post-pre-training stage using labeled datasets. This
intermediate fine-tuning strategy enables themodel to incorporate semantic infor-
mation before task-specific fine-tuning, facilitating the training of high-capacity
models while mitigating overfitting concerns.

During fine-tuning, the generation task can be includes as an auxiliary objective
with coefficient λ: Lf = Ld + λ× Lg, where Ld represents the downstream task
loss. The PointGPT authors assessed that this provides regularization benefits and
improved generalization.

3.5.2 PointGST

PointGST (Point cloud Graph Spectral Tuning) [74] is a PEFT (Parameter-Efficient
Fine-Tuning) method (section 2.6) to fine-tune pre-trained models to new point
cloud tasks. Existing PEFT (Parameter-Efficient Fine-Tuning) methods such as
IDPT [84] and DAPT [85] struggle with so-called "token confusion" within frozen
models, and PointGST sets out to address this. Token confusion occurs when pre-
trained models produce similar internal representations for points that should
be distinguished in the downstream task. Since pre-trained models learn general
features without knowledge of specific task requirements, their output tokens can
fail to capture the fine-grained distinctions necessary for good task performance.
For instance, tokens representing different tree species may appear too similar in
the feature space, making classification difficult. Existing spatial domainmethods

24



3.5 Models

attempt to resolve this confusion by adding learnable parameters that modify
these confused tokens directly.

PointGST addresses this limitation by shifting the adaptation process from spa-
tial coordinates to the spectral domain. The framework integrates lightweight
Point Cloud Spectral Adapters (PCSA) into each transformer layer while keeping
the entire pre-trained backbone frozen. The spectral domain transformation
decomposes point cloud features into orthogonal frequency components, where
each component captures a specific pattern of variation across the point cloud
structure. This orthogonality provides a mathematical guarantee that different
frequency components remain independent, creating natural separation channels
for distinguishing confused tokens. Rather than attempting to separate similar
spatial features directly, the method can selectively enhance or suppress specific
frequency patterns that correspond to task-relevant geometric characteristics.

The method operates through three sequential steps. PointGST constructs point
graphs G = {V,E,W} where vertices V represent the point centers from FPS,
edges E encode relationships, and the adjacency matrixW ∈ Rn×n weights the
relationships. The adjacency matrix elements are computed using:

wi,j =
1

δi,j/min(∆) + Ii,j
(3.15)

where δi,j represents the Euclidean distance between points i and j,min(∆) de-
notes the minimum non-zero distance, and I is the identity matrix. This way,
nearby points receive stronger connections. The method constructs both global
graphs capturing overall structure and local graphs capturing small-scale patterns.

Second, these graphs undergo spectral transformation via Graph Fourier Trans-
form (GFT). The graph Laplacian matrix L = D − W , where D represents a
diagonal matrix with each element di,i =

∑n−1
j=0 wi,j representing the degree of

vertex i (i.e. the cumulative strength of all connections), undergoes eigenvalue
decomposition:

L = UΛUT (3.16)

The eigenvectors in U form an orthogonal basis representing different variation
patterns across the graph structure. Low-frequency eigenvectors correspond to
smooth, gradual changes across the point cloud, while high-frequency eigenvec-
tors correspond to sharp, localized variations.

Third, the Point Cloud Spectral Adapter (PCSA) performs fine-tuning entirely
within this spectral domain. Input tokens Tin undergo down-projection via Ts =
TinW

T
d , then get transformed to the spectral domain using the pre-computed spec-

tral basis: T f = UTTs. A shared linear layer adapts these frequency coefficients:

25



3 Methodology

T f ′
= T f + act(Linear(T f )) (3.17)

This adaptation process selectively adjusts the magnitude of different frequency
components, controllingwhichgeometric patterns receive emphasis. Low-frequency
components correspond to smooth, global variations while high-frequency com-
ponents represent sharp, local details. The inverse transformation T̂ f = UT f ′

returns adapted features to the spatial domain and then features get up-projected
to the original shape.

The spectral approach provides better performance across multiple benchmarks
while requiring significantly fewer (about 1%) trainable parameters than fully
fine-tuned counterparts. The spectral basis computation is also efficient because
it occurs only once per dataset, being shared across all transformer layers.

3.6 Data

3.6.1 Custom datasets

Pre-training dataset

The unlabeled pre-training dataset comprises two components: segmented indi-
vidual trees extracted from public ALS point clouds from Canton Neuchâtel using
the SegmentAnyTree architecture [42] (fig. 3.5), and synthetic tree data generated
through the SimpleSynthTree framework [75]. Since pre-training aims to enable
the model to learn fundamental tree structures and patterns without requiring
species labels, forest areas in Neuchâtel were selected without regard to species
composition, given that comprehensive inventory data is unavailable. The dataset
can be assumed to roughly follow the mean Swiss species distribution (table 2.1),
with this assumption beingmost reliable for the fivemost abundant species, which
are commonly found at the latitudes of Canton Neuchâtel. Similarly, the synthetic
trees lack species-specific attributes.

The public ALS point clouds from Canton Neuchâtel provide coverage of the entire
cantonal surface in 1km2 tiles and can be viewed at [86]. The SITN (Neuchâtel
Territorial Information System) conducted the LiDAR survey in spring 2022. These
point clouds achieve an average density exceeding 100 pts/m2 across the canton
and were acquired using a Riegl VQ-Q1560II sensor operating at 4 MHz across
81 flight lines, with a mean flight height of around 1000 m. The survey attained
altimetric (vertical) precision below 5 cm and planimetric precision below 10
cm, representing the upper quality threshold achievable with contemporary ALS
systems (table 2.2). The point classifications include ground, low vegetation,
medium vegetation, high vegetation, building, and road categories.

26



3.6 Data

Figure 3.5: An example of a segmented ALS point cloud from Canton Neuchâtel used for the
pre-training dataset.

Thirteen 1km2 tiles from selected forested areas were processed using Segmen-
tAnyTree [42], a platform-agnostic deep learning model designed for individual
tree instance segmentation across varying point densities. The model employs a
3D convolutional network based on the PointGroup architecture [87] with a U-Net
backbone for feature extraction. Input point clouds undergo voxelization using
the Minkowski Engine [88] to enable 3D convolutions. The architecture incorpo-
rates three parallel prediction heads that operate on extracted features: semantic
segmentation for tree versus non-tree classification, 3D offset prediction that gen-
erates vectors directing each point toward its respective tree center to facilitate
spatial clustering, and 5-dimensional embedding that maps points into a learned
feature space where intra-tree points cluster together while inter-tree points re-
main separated. Point clustering utilizes region-growing [89] and mean-shift [90]
methods applied to these embeddings, with final refinement through ScoreNet
[91]. ScoreNet scores and filters tree candidates based on their intersection-over-
unionwith ground truth data, followed by non-maximumsuppression to eliminate
redundant detections.

The point cloud tiles were processed directly without any point classification
filtering. Only resulting instances with more than 1024 points were retained,
preserving approximately 60% of all instances (table 3.1). As a representative
example, tile 2565500_1212500 exhibited the following distribution: mean of 3405
points per instance, median of 2096 points, minimum of 10 points, and maximum
of 52554 points. Tree instances in every tile demonstrated significant skewness
toward lower point counts (fig. 3.6).

27



3 Methodology

Tile ID Total instances Filtered instances (≥
1024 pts)

Ratio

2536000_1194000 9600 5439 57%

2536500_1193500 11574 7697 67%

2536500_1194000 11754 6996 60%

2537000_1194000 11354 7841 69%

2537500_1194000 10687 7011 66%

2537000_1194500 10370 5965 58%

2564000_1217000 6761 3698 55%

2564000_1216500 8827 3639 41%

2564500_1212500 980 552 59%

2565000_1212000 12740 8760 69%

2565000_1212500 11994 7824 65%

2565000_1213000 7565 4657 62%

2565500_1212500 10886 7577 70%

Total 134092 77656 58%

Table 3.1: Number of tree instances across point cloud tiles with filtering threshold of 1024 points
per instance.

Figure 3.6: Distribution of points per instance for tile 25655001212500.

This ALS dataset was complemented with an equal number (77,656, table 3.1) of
synthetic point clouds generated with SimpleSynthTree [75]. The framework oper-
ates through a two-stage process (fig. 3.7). First, tree structures are modeled with
meshes as curved and tapered cylinders using cubic spline interpolation between
control points at the tree base, mid-height, and crown. Stem diameter follows a
linear taper from a base diameter to zero at the apex. The framework incorpo-

28



3.6 Data

rates stem splitting through additional cylinders branching from the main stem,
and simulates foliage distribution through height-dependent branch placement
with realistic canopy shapes. Second, the mesh structures undergo point-based
sampling to generate final synthetic point clouds. The parameters employed for
the generation process are resumed in table 3.2.

Parameter Values used Parameter Values used

Number of points 4096 Maximum canopy width 10.0 m

Tree height (ht) range 20–50 m Max canopy width
height

0.4–0.8 ht

Base diameter range 0.3–1.0 m Minimum canopy height 0.2–0.5 ht

Stem split height range 0.15–0.9 ht Tree top horizontal
offset

±2.5 m

Stem split probability 50% Tree mid horizontal
offset

±0.5 m

Number of branches 60–150 Foliage vertical noise 0.5 m

Table 3.2: SimpleSynthTree parameters used for synthetic tree generation complementing the
Neuchâtel dataset.

Figure 3.7: The tree synthesis process in SimpleSynthTree. Figure taken from [75].

29



3 Methodology

Post-pre-training dataset

The post-pre-training stage addresses the gap between generation and the down-
stream classification task (section 3.5.1). For this, a labeled dataset was created
unsing the SynForest framework [76]. SynForest generates synthetic forest data
by combining ForestFactory [92] for forest stand simulation, PyTreeDB [93] for
tree modeling, and Helios++ [80] for LiDAR sensor simulation. Unlike SimpleSyn-
thTree’s individual tree focus, SynForest operates at forest scale, creating complete
stands with inter-tree relationships and spatial distribution.

The workflow comprises three stages: map, scene, and simulation (fig. 3.8). In the
map stage, ForestFactory generates forest configurations using climate records to
simulate tree growth over multiple years, producing tabular data with positional
coordinates, height, diameter, and species information for each tree. The scene
stage places tree models from PyTreeDB at corresponding positions, selecting
models that match the specified species, height, and diameter criteria. Trees
in PyTreeDB are represented in GeoJSON files containing tree location, species,
properties, and links to one ormorepoint clouds fromALS,ULS, or TLSdata. In the
simulation stage, Helios++ simulates configurable LiDAR sensors and platforms
to generate synthetic point clouds by modeling scanning platform trajectories
through the forest environment. Each generated point contains tree instance and
species labels, among other attributes.

To create the dataset, a single forest configuration from ForestFactory was used,
since inter-tree dynamics are not relevant for this study and individual trees are
subsequently isolated during processing. To maximize utilization of tree models
in PyTreeDB and ensure diverse representation in the final dataset, a custom
algorithm (listing 3.1) distributed available tree models across six identical forest
configurations, each containing eight species positions with predetermined tree
counts per species for a total of 532 trees. The assignment algorithm iterates
through species in reverse order of availability, assigning models to species po-
sitions that minimize the difference between required tree count and available
model count. While this approach promotes diverse model utilization across both
TLS and ULS sensor simulations, the final model selection remains subject to
height and diameter matching criteria during the scene stage, meaning not all
available models may ultimately be used in the dataset.

Figure 3.8: The Synforest simulation process. Figure taken from [76].

30



3.6 Data

� �
1 # goal : use al l 3,181 unique tree models from pytreedb without repetit ion
2 species_models = {’fagus_sylvatica’: 930, ’picea_abies’: 556, ...} # available models
3 tree_counts = [76, 136, 121, 57, 39, 57, 20, 26] # trees needed per position
4 assignments = empty_grid(6_forests, 8_positions)
5
6 # start with rarest species to ensure they get placed
7 for species in order_by_rarity(species_models):
8 models_left = species_models[species]
9
10 while models_left > 0:
11 # find tree count that best matches remaining models
12 best_fit = find_closest_match(models_left, tree_counts)
13
14 # skip i f we would waste too many models (e .g . , 7 models for 76−tree position )
15 if models_left < tree_counts[best_fit] and already_placed_somewhere:
16 break
17
18 place_species(species, best_fit)
19 models_left -= tree_counts[best_fit]
20
21 # result : 3,081 models assigned , 6,162 trees total ( 2 sensors )� �

Listing 3.1: Tree species assignment algorithm in Python pseudocode for the post-pre-train dataset.

The resulting dataset has a diverse but uneven distribution of 17 tree species
(fig. 3.9), reflecting both the availability ofmodels in PyTreeDB and the assignment
algorithm’s optimization strategy. Fagus sylvatica represents the most abundant
species with nearly 1’900 trees, followed by Picea abies with approximately 1’100
trees. The remaining species show progressively lower counts, with some species
like Quercus robur and Betula pendula represented by fewer than 100 trees each.
This distribution pattern and these species frequencies are reasonably similar to
what could be expected in a natural setting (fig. 2.1).

Figure 3.9: Tree species distribution in the post-pre-train dataset.

31



3 Methodology

Of the 6,161 generated trees, 106 were filtered out for having fewer than 1024 points,
resulting in a final dataset of 6,056 trees. These tree instances exhibit relatively
high point densities, attributable to the characteristics of the simulated platforms
(fig. 3.10).

Figure 3.10: Distribution of points per instance for the post-pre-train dataset.

3.6.2 Literature dataset

The literature dataset expanded the custompre-training dataset (section 3.6.1) with
diverse unlabeled data from predominantly ground-based sensor platforms (ta-
ble 3.3). Not all datasets contained the complete data described in their respective
publications at the time of this work. For example, the Boreal3D dataset was avail-
able only in an incomplete version during data collection. For ForestSemantic,
only three out of six forest plots were available.

Dataset Platform Type Raw trees Trees≥ 1024 pts

Boreal3D [94] ALS, ULS, TLS, MLS Synth. 18,976 13,257

ForestSemantic [95] TLS Real 308 308

FOR-Instance [96] ULS Real 1,130 997

LAUTx [97] TLS, PLS Real 1,030 1,030

TreeLearn [43] MLS Real 6,884 6,860

WythamWoods [98] TLS Real 876 876

Total 29,204 23,328

Table 3.3: Overview of the literature datasets used to expand the pre-training dataset.

A numerical precision issue emerged during preprocessing of the FOR-Instance

32



3.6 Data

dataset. Converting coordinates fromfloat64 tofloat32precision forCUDA-compatible
FPS sampling caused large UTM coordinate values to be truncated, resulting in
duplicate points during normalization. This truncation distorted point clouds and
caused training instabilities. The solution was to perform normalization in float64
precision before converting to float32 for FPS sampling.

3.6.3 Benchmark dataset

FOR-Species20K [77] was selected as the benchmark dataset for fine-tuning and
evaluation due to its explicit focus on tree species classification tasks. The dataset
comprises 20,158 individual tree point clouds representing 33 species (fig. 3.11),
making it the largest available point cloud dataset for tree species classification
from proximal laser scanning. The data distribution by platform shows TLS consti-
tuting 70% of the trees (acquired using 12 different TLS sensors), ULS contributing
22% (1 sensor type), and MLS representing 8% (1 sensor type). Geographically,
90% of the data originates from European forests, covering threemain ecoregions:
temperate forests (61%), boreal forests (25%), and Mediterranean forests (7%).
The remaining data includes temperate and boreal plantation forests from other
continents (4%) and tropical savannas (3%).

The species distribution reflects common patterns observed in European forest
ecosystems and Switzerland (fig. 2.1). Dominant species such as Pinus sylvestris
(3’296 individuals), Fagus sylvatica (2’482 individuals), and Picea abies (1’983 indi-
viduals) are well-represented. In contrast, rarer species like Prunus avium are
represented by only 50 individuals. This imbalance presents challenges for model
training but provides a realistic benchmark for evaluating classification perfor-
mance under real-world conditions where species distributions are naturally
uneven. Tree heights range from 0.3 to 56.3 meters and exhibit substantial intra-
specific variation, reflecting different developmental stages and growth conditions.
Coniferous species show a mean height of 20.4 m (standard deviation = 8.2 m)
compared to broadleaved species with a mean of 11.4 m (standard deviation = 8.7
m). Dominant European species cover the full spectrum from young to mature
trees, providing good representation across developmental stages.

For benchmarking purposes, the dataset is divided by its authors into develop-
ment (90%, 17,707 trees) and test sets (10%, 2,254 trees) using stratified random
sampling. The stratification involved three levels of balancing. First, species
representation was capped at 100 trees per species to prevent dominant species
from overwhelming the test set. Second, tree heights were divided into 20 equal
bins of 2.8-meter width to ensure representation across developmental stages.
Third, each height bin was subdivided by platform type (TLS, MLS, ULS), creating
combined strata that represent specific height-platform combinations.

33



3 Methodology

For each species, the number of available height-platform strata was counted as j,
and the target number of trees per stratum was calculated as:

nstratum =
100

j
(3.18)

The actual sampling from each stratum followed the constraint:

sampled = min(nstratum, available trees in stratum) (3.19)

This stratified approach produced a test dataset with balanced representation
across species, tree sizes, and acquisition platforms, enabling evaluation of model
performance under diverse conditions.

Figure 3.11: Summary chart of the FOR-Species20K dataset. Figure taken from [77].

The distribution of point counts across tree instances has a very broad range
(fig. 3.12), with the largest TLS trees containing more than 10 million points and
the mean tree having 316’165 points. Trees with fewer than 1’024 points were
excluded from the dataset, resulting in 254 filtered instances and a final training
split of 17’453 trees.

34



3.6 Data

Figure 3.12: Distribution of points per instance for the benchmark dataset.

On the published benchmark evaluation, image-based methods (section 2.4) out-
performed point cloud-based approaches across all evaluation metrics. The top
three models employed multi-view 2D projection strategies, while the best point
cloud method achieved 4th place and performance within 4% overall accuracy of
the leading approach.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

DetailView 79.5 82.3 76.7 78.0

YOLOv5 77.9 84.2 75.0 77.3

SimpleView 76.2 76.9 75.5 75.6

Ensemble PointNet++ 75.6 78.2 73.5 74.9

Table 3.4: Performance of top-performing models on the FOR-species20K benchmark dataset.

DetailView [99] builds upon SimpleView [100] and implements dataset balancing
via weighted random sampling across species, tree size, and platform types. The
method uses aDenseNet-201 backbone to process seven 2Dprojected depth images
(256×256 pixels), incorporating top and bottom views alongside a trunk projection
to capture bark structural features. The model applies augmentation strategies on
both point clouds (random subsampling and rotations) and image transformations
(flipping), with final predictions derived from averaging 50 different predictions.

YOLOv5 implements a modified architecture based on the Ultralytics framework
[101] that processes four orthographic side-view projections (600×800 pixels) col-
ored by point density. The approach generates final species predictions through
weighted averaging of class probabilities across multiple views using a hierar-
chical weighting scheme that assigns decreasing importance to lower-ranked

35



3 Methodology

predictions.

SimpleView [100] is the foundational multi-view approach and processes six or-
thogonal camera projections through a ResNet-18 backbone. The method gener-
ates 512×512 pixel depth-colored images from down-sampled point clouds (16’384
points) and employs balanced accuracy rather than overall accuracy for model
selection to address data imbalance.

Ensemble PointNet++ is the leading point cloudmethodology, utilizing PointNet++
[64] to extract features directly from 3D point clouds through three sets of sub-
sampling and grouping operations on filtered instances with a minimum of 8’192
points. The approach incorporates rotational augmentation (6-fold around the
z-axis) and random point sampling, and performance is enhanced by ensemble
prediction of 10 classifiers.

All top-performing models demonstrated consistent performance above 70% ac-
curacy across TLS, MLS, and ULS platforms, with DetailView exhibiting particular
strength on MLS and ULS data while YOLOv5 marginally outperformed other
methods on TLS acquisitions.

The authors of DetailView published the train and validation loss data on the
model’s GitHub repository (fig. 3.13). Given that this is the leading modelling
approach on the benchmark, this data allows for direct comparison with the
approach of this work.

Figure 3.13: Loss curves of DetailView on FOR-SPecies20K.

36



3.6 Data

3.6.4 Dataset summary

A summary of the datasets per training stage is provided in table 3.5. For the
labeled post-pre-training and fine-tuning datasets, the tree species composition
and overlap are provided in fig. 3.14. In total, 15 species overlap between the
datasets, representing 45.5% of species in the fine-tuning dataset that are already
present in the post-pre-training stage.

Dataset Platform Type Trees Species

Pre-training ALS, ULS, TLS, MLS, synth. Mixed 178’640 N/A

Post-pre-training TLS, ULS (simulated) Synth. 6’056 17

Fine-tuning TLS, ULS, MLS Real 17’453 33

Total 202’149

Table 3.5: Overview of datasets used in this study.

Figure 3.14: Species overlap between post-pre-training and fine-tuning datasets.

37





4 Results and discussion

4.1 Pipelines implementation

4.1.1 Preprocessing

The preprocessing pipeline inherits from PyTorch’s Dataset class and operates
through sequential stages. Its goal is to transform heterogeneous point clouds of
varying sizes into normalized point clouds with uniform point counts through
FPS, enabling more efficient and faster processing during training. These point
clouds can be further downsampled during training if needed. A code overview
is given in listing 4.1. Given the use of GPU operations, batch processing logic is
implemented to prevent GPU overload and Out Of Memory (OOM) errors.

The initial stage loads tree instance point cloud data from various file structures
and formats, depending on the dataset, and sorts instances by point count. Since
point clouds can exhibit vastly different point counts (see fig. 3.12), sorting ensures
efficient padding for vectorized GPU operations when creating and processing
batches. Without sorting, the largest point cloud in any batch determines the
padding size for all other instances in that batch. This approach leads to memory
inefficiency, as a point cloud containing millions of points forces all other point
clouds in the same batch to be padded to the same length, filling memory with
zeros. By sorting data by point count first, padding within batches is applied to
similarly sized point clouds, achieving greater efficiency.

A filter_small_clouds parameter removes point clouds containing fewer points
than the target sampling number npoints. No upsampling strategy is imple-
mented because both FPS on fewer than npoints points and random sampling
with replacement would create point clouds with duplicate points. This dupli-
cation is problematic when it propagates through the training pipeline for two
reasons:

▶ When including the generative task (section 3.5.1), RDPs based on centers
are calculated for next group prediction. If two centers are identical, the
relative direction calculation becomes undefined, and these NaN values
propagate, destabilizing training.

▶ When finetuning with spectral adapters (section 3.5.2), Laplacian matrices
become rank-deficient, causing eigendecomposition to crash when calculat-
ing the spectral basis.

39



4 Results and discussion

� �
1 def preprocess_dataset(file_data, npoints, device):
2 # sort f i l es by point count to make padding more ef f i c ient
3 file_data.sort(key=lambda x: x.point_count)
4
5 batch_size = initial_batch_size
6 processed_files = 0
7 all_point_clouds = []
8
9 while processed_files < len(file_data):
10 try:
11 # load batch
12 batch_files = file_data[processed_files:processed_files + batch_size]
13 point_clouds = load_point_clouds(batch_files)
14
15 # f i l t e r small clouds :
16 point_clouds = [pc for pc in point_clouds if len(pc) >= npoints]
17
18 # pad tensors for batch processing
19 batch_tensor, mask = create_padded_batch(point_clouds, device)
20
21 # normalization
22 centroids = compute_masked_centroids(batch_tensor, mask)
23 centered_batch = batch_tensor - centroids.unsqueeze(1)
24 max_distances = compute_max_distances(centered_batch, mask)
25 normalized_batch = centered_batch / (max_distances + eps)
26
27 # FPS
28 if device.type == ’cuda’:
29 sampled_batch = sample_farthest_points_cuda(
30 normalized_batch, npoints)
31 else:
32 sampled_batch = sample_farthest_points_cpu(
33 normalized_batch, npoints)
34
35 all_point_clouds.append(sampled_batch.cpu())
36 processed_files += batch_size
37
38 # halve batch size i f getting OOM
39 except RuntimeError as e:
40 print(f’CUDA␣out␣of␣memory:␣{str(e)}’)
41 batch_size = batch_size // 2
42
43 final_dataset = torch.cat(all_point_clouds, dim=0)
44 return final_dataset� �

Listing 4.1: Preprocessing pipeline for point cloud normalization and sampling in Python
pseudocode.

The data is then normalized. For each point cloud P = {p1,p2, ...,pn} where
pi ∈ R3, the centroid is computed using validity masks to account for variable-
length point clouds within padded batches:

c =

∑N
i=1 pi ·mi∑N

i=1mi

(4.1)

where c represents the centroid, pi denotes individual points,mi indicates the
validity mask, andN represents the padded sequence length. Each point is then

40



4.1 Pipelines implementation

centered by subtracting the centroid: P ′ = {p1 − c,p2 − c, ...,pn − c}. Finally,
scaling is applied:

p′
i =

pi − c

dmax + ϵ
(4.2)

where dmax = maxi ∥pi − c∥2 and ϵ = 10−8 provides numerical stability when
points lie very close to the centroid.

FPS (eq. (3.3)) is applied to reach npoints. The preprocessing pipeline begins
with an initial batch size of 1’000 point clouds and automatically halves this size
whenever an OOM error occurs, ensuring continuous processing. Task-specific
point cloud metadata is processed separately. Preprocessed point cloud datasets
are stored in PyTorch tensor format (.pt files) to ensure efficient loading and
eliminate the need for re-processing during subsequent experiments.

To accelerate file loading for datasets containing numerous individual point cloud
files, a parallel loadingmechanism is implementedusingPython’s concurrent.futures
module with ThreadPoolExecutor. This approach maximizes I/O efficiency by
minimizing idle times during file operationswhile avoiding the overhead of spawn-
ing multiple processes, unlike the multiprocessingmodule approach for circum-
venting Python’s Global Interpreter Lock (GIL). Optimal performance is achieved
using 4 CPU workers, providing approximately 1.5× speedup compared to sequen-
tial loading (fig. 4.1). Preprocessing the FOR-Species20K training split with npoints
= 8’192 reduces dataset storage from 24 GB to 2.8 GB and requires approximately
70 minutes on an A100 GPU.

Figure 4.1: Speedup investigation for parallel vs. sequential loading applied on .laz point cloud
files.

41



4 Results and discussion

4.1.2 Training

Overview

For each of the training stages (pre-training, post-pre-training, fine-tuning), a
separate training loop was developed. Comprehensive experiment configuration
is handled through YAML configuration files that are converted into EasyDict
dictionaries and passed as arguments to various builder functions throughout the
pipeline. Additional command-line arguments are parsed via argparse and define
higher-level run configurations. All training loops support distributed training via
the torch.distributed package, leveraging the tensor gathering utilities already
present in the PointGPT and PointGST codebases.
To accelerate training, Automatic Mixed Precision (AMP) was implemented
through the torch.amp package, which automatically scales operations between
float32 and float16 precision to reduce computational load. Performance evalua-
tion confirmed that AMP implementation did not degrade model accuracy. The
speedup achieved was highly dependent on run configuration parameters, in-
cluding model size and batch size, as well as whether distributed training was
employed, with speedup factors ranging from 1.3× to 2.3× (table 4.1).

Metric Full precision Mixed precision

Batch time 3.2 s 1.2 s

Batch speedup 1.0× 2.72×

Epoch 0 time 566 s 231 s

Epoch 1 time 511 s 222 s

Epoch 2 time 511 s 222 s

Epoch speedup 1.0× 2.30×

Table 4.1: Training speed comparison between full precision and mixed precision for distributed
PointGPT pre-training using 4 GPUs (batch size 128 per GPU, 512 total).

torch.compile was additionally implemented to accelerate training through Just-
In-Time (JIT) compilation, which compiles PyTorch code into optimized kernels.
The performance improvement from this method proved less substantial than
AMP, providing speedup factors of approximately 1.10×. However, torch.compile
could not be utilized in runs involving the generative task due to incompatibility
with third-party C++ extensions, particularly the optimized CUDA kernels required
for Chamfer Distance calculations.
Monitoring and logging capabilities were expanded and migrated to Weights and
Biases for comprehensive experiment tracking. Stage-specific metrics were im-
plemented according to training requirements. Across all training loops, gradient
norm, parameter norm, gradient-to-parameter ratio, and AMP scaling factor log-
ging was implemented to identify exploding or vanishing gradient issues and
assess AMP scaling influence. Checkpoint management encompassed defining
appropriate saving conditions and implementing robust checkpoint saving and
resuming functionality.42



4.1 Pipelines implementation

Models and training configurations

3 model configurations were experimented with: Small (S), Base (B), Large (L),
following the Vision Transformer configurations [102].

Component Small (S) Base (B) Large (L)

Encoder 494K 6.4M 7.0M

Extractor layers 21.3M 85.1M 302.4M

Extractor cls head 272K 469K 600K

Generator layers 7.1M 28.4M 50.5M

Total parameters 29.2M 120.5M 360.5M

Table 4.2: Parameter counts across model configurations.

Most experimentswere conducted using the S configuration for computational effi-
ciency. Once stable training configurations were established, the best-performing
parameters were directly scaled to the L version, as it was expected to outperform
the B configuration. The B configuration was evaluated only during pre-training
experiments.

The AdamW optimizer was employed across all experiments with a regulariz-
ing weight decay of 0.05. Weight decay prevents overfitting by penalizing large
parameter values, encouraging the model to learn simpler, more generalizable
representations. Following initial experiments with constant learning rates, a
cosine annealing learning rate scheduler was implemented with experiment-
specific warmup periods. The warmup starting learning rate was consistently set
to one-tenth of the peak learning rate, while the minimum learning rate was de-
fined as one-hundredth of the peak value. Additional regularization was provided
through drop path, a stochastic regularization technique that randomly drops
entire residual transformer blocks during training, forcing the network to learn
redundant pathways and improving generalization.

Early stopping was implemented selectively based on experimental requirements,
typically configured to trigger after 10% of the total planned epochs when valida-
tion metrics ceased improving.

43



4 Results and discussion

Transformations

Five different transformations (fig. 4.2) were applied sequentially to point clouds
for data augmentation, with each transformation operating on the output of the
preceding operation. The transformations are executed within the training loop
immediately before model inference. The augmentation strategy addresses ro-
tational invariance, occlusion effects, scale variations, spatial symmetries, and
sensor noise:

▶ PointcloudRotate: Applies random rotations around the y-axis with angles
uniformly sampled from [0, 2π], preserving vertical tree orientation while
introducing rotational variance.

▶ PointcloudRandomInputDropout: Randomly removes a percentage of
points, replacing dropped coordinates with the first point’s position to simu-
late occlusion effects common in dense forest environments.

▶ PointcloudScaleAndTranslate: Applies random scaling factors along all
spatial dimensions, combined with translation offsets.

▶ RandomHorizontalFlip: Randomly flips point clouds along x and y axes
while preserving the z-axis as upright, exploiting natural symmetrical prop-
erties of tree structures.

▶ PointcloudJitter: Adds Gaussian noise to simulate LiDAR measurement
uncertainty.

Pre-training and post-pre-training stages employed PointcloudRotate, Ran-
domHorizontalFlip, and PointcloudScaleAndTranslate with scaling factors rang-
ing between 0.8 and 1.2, and translation offsets within ±0.2 units. This parameter
range accommodates natural variability in tree size and spatial positioning while
remaining within phenologically realistic bounds for given developmental stages,
as the 20% variation was deemed biologically appropriate. For fine-tuning, Point-

cloudRandomInputDropout was added with a maximum dropout ratio of 20% to
simulate sensor occlusions characteristic of complex forest environments. Point-
cloudJitter was ultimately excluded from the fine-tuning augmentation strategy
as it was deemed excessively noisy for effective learning.

44



4.1 Pipelines implementation

Figure 4.2: The applied point cloud transformations for augmentation purposes.

45



4 Results and discussion

Dataset balancing

The post-pretraining and finetuning datasets exhibit severe class imbalance, par-
ticularly the latter (fig. 3.11), where the ratio between themost common and rarest
species reaches 50:1. To mitigate this, different weighting strategies for the loss
function were analyzed (table 4.3 and fig. 4.3):

▶ Effective numbers [103] (β = 0.99, 0.998) are based on diminishing informa-
tion returns as sample size increases. The effective number is calculated
as En = 1−βn

1−β , where n denotes the class sample count, yielding weights
w = 1−β

En
. Higher β values create more aggressive reweighting.

▶ Logarithmic weighting employs w = 1 + log
(
nmax
ni

)
, providing moderate

reweighting that scales logarithmically with class rarity.
▶ Square root weighting utilizes w = 1+

√
nmax
ni

and applies stronger reweight-
ing to rare classes compared to logarithmic weighting.

Weighting method Min weight Max weight Weight ratio

Effective number (β = 0.990) 0.9383 4.0802 4.35

Effective number (β = 0.998) 0.6361 12.5201 19.68

Logarithmic 0.5061 2.9425 5.81

Square root 0.6939 4.1996 6.05

Table 4.3: Normalized class weight ranges for different balancing strategies applied to the FOR-
Species20K dataset.

Figure 4.3: Comparison of class weighting strategies for the FOR-Species20K dataset. The black
dots are the effective class counts of the 33 classes in the dataset.

The effective number approach with β = 0.998was selected. This method reduces
the effective imbalance ratio to approximately 2.5:1.
46



4.1 Pipelines implementation

Dataset splits

Dataset splits were applied to the tree counts detailed in table 3.5. The pre-training
dataset used a random split of 99% training and 1% validation data to monitor
potential overfitting. The post-pre-training dataset employed a similar random
split with 95% allocated to training and 5% to validation.

The splitting methodology for FOR-Species20K was more sophisticated, adopting
the approach from DetailView [99] to enable direct performance comparison on
the validation split. This stratified sampling approach ensures balanced repre-
sentation across three dimensions in the validation set: species, sensor platform
type, and tree height.

The split generation process begins by encoding categorical variables (species and
sensor platform type) using label encoders and standardizing all three features to
comparable ranges. Starting from a randomly selected tree, the method employs
FPS to iteratively select additional trees that maximize distance from previously
chosen samples within this 3D parameter space. The sampling process executes
800 iterations, generating a candidate pool twice the size of the target validation set.
From this diverse candidate pool, 400 trees are randomly selected to constitute the
final validation set. This methodology enables evaluation of model generalization
across species diversity, sensor platform types, and tree sizes.

Figure 4.4: Comparison of the training and validation splits for the fine-tuning dataset, with values
expressed as percentages of the dataset. 47



4 Results and discussion

Linear probing

To evaluate the quality of representations learned by self-supervised learning
models, Linear Probing (LP) and KNN-probing on labeled datasets are commonly
employed [104]. In this approach, downstream task data is processed by themodel
to extract features, which are subsequently passed to either a logistic regression
classifier or a KNN classifier to assess classification performance. Marks et al.
[105] demonstrated that linear and kNN probing accuracies are highly correlated
and can be used largely interchangeably.

This study implemented a linear probing validation protocol executed every 10
epochs throughout the pre-training and post-pre-training stages. Probing in-
volved extracting features after the extractor blocks (fig. 3.4) from the entire
training split of the FOR-Species20K dataset. Accuracy was then evaluated using a
LogisticRegression classifier from scikit-learn on the validation split. Linear
probing was chosen over KNN given the high dimensionality of the feature vector
resulting from group sequence concatenation and flattening (24’576 dimensions
for model S). While this dimensionality poses challenges for every linear classifier,
KNN suffers disproportionately from the curse of dimensionality.

The computational intensity of the probing process required extending the GPU
timeout in distributed mode to 3600 seconds, as evaluation is performed by a
single rankwhile remaining ranks wait idle. Both top-1 and top-5 accuracy (correct
class among top five predictions) metrics were recorded to assess classification
performance and compared against the reference values in table 4.4.

Task category Top-1 range (%) Top-5 range (%) Characteristics

In-domain evaluation 32.5 – 78.9 56.4 – 94.9 Standard SSL benchmark

Object-centric classification 42.4 – 91.2 64.4 – 99.2 Coarse-grained categories

Fine-grained classification 7.8 – 61.1 16.6 – 85.5 Species-level tasks

Cross-domain transfer 22.1 – 75.2 42.1 – 90.8 Style/domain shifts

Table 4.4: SSL linear probing performance ranges across vision task categories and datasets. From
[105], summarized

.

48



4.1 Pipelines implementation

4.2 Training runs

4.2.1 Overview

Excluding runs interrupted at or shortly after launch, approximately 300 partial
or complete training runs were conducted. Roughly three-quarters of these runs
were exploratory in nature, serving to develop the complete training pipeline and
identify appropriate parameter ranges. The remaining quarter aimed to assess
the the effective model potential, though some still encountered implementation
bugs or convergence issues.

The core experimentation focused on the S model configuration before expand-
ing to the L configuration once reliable performance and stable training runs
were established. The complete three-stage training process was successfully
implemented using 1024 points for both pre-training and post-pre-training phases,
mirroring the procedure established in the PointGPT paper. For fine-tuning, both
1024 and 2048 point configurations were thoroughly investigated, with the lat-
ter requiring adapted model configurations to accommodate the doubled token
sequence length. While pre-training with 2048 points was explored, the 1024-
point configuration providedmore reliable convergence for the complete training
pipeline. Although significantly higher resolutions are available from ground-
based platforms (Ensemble PointNet++, the leading point-based method on the
benchmark detailed in section 3.6.3, employs 8’192 points), the intention was to
establish the approach’s limits and develop from that foundation. Moreover, point
densities exceeding 2048 points per tree prove challenging to achieve consistently
with ALS data, and the objective was to avoid penalizing this platform, given that
ALS constitutes a substantial portion of the pre-training dataset. Considering the
approach’s potential, developing a truly cross-platform model effective on ALS
data too would represent a valuable contribution.

Training durations varied considerably across the three stages. Pre-training rep-
resented the most intensive phase, with training runs requiring 1.5 to 3.5 days
to complete depending on batch and model size, whether distributed training
was employed, and whether AMP was implemented. Post-pre-training proved
comparatively efficient, requiring 1 to 6 hours to complete. Fine-tuning required
intermediate training durations, ranging from 9 hours to 1 day.

49



4 Results and discussion

4.2.2 Pre-training

Best runs

Figure 4.5: Pre-training: reconstruction loss on the training split.

Figure 4.6: Pre-training: reconstruction loss on the validation split.

Model Epochs Batch size LR schedule Points Groups

L 350 640 peak 2× 10−5, warmup 80ep, cycle 600ep 1024 64

S 300 256 peak 1× 10−4, warmup 10ep, cycle 300ep 1024 64

Table 4.5: Pre-training configurations.

50



4.1 Pipelines implementation

Figure 4.7: Pre-training: linear probing top 1.

Figure 4.8: Pre-training: linear probing top 5.

The reconstruction loss trajectories (figs. 4.5 and 4.6) show convergence for both
model configurations. Both models’ losses decrease consistently from approxi-
mately 0.05 to 0.025, with model S achieving lower loss values on both training and
validation sets throughout the training process. Model L, being approximately 14
times larger than model S, necessitated a more conservative learning rate sched-
ule to avoid divergence (table 4.5). This approach included an extended warmup
period of 80 epochs and a peak learning rate five times smaller than Model S.
The cosine decay cycle was extended over 600 epochs, resulting in a learning
rate that remained relatively high compared to the cycle’s potential minimum at

51



4 Results and discussion

the training’s conclusion. The batch size was also increased to address conver-
gence issues. The close alignment between training and validation reconstruction
losses indicatesminimal overfitting, showing that bothmodels potentially learned
generalizable representations.

In linear probing (figs. 4.7 and 4.8), model S consistently outperforms model L.
For top-1 accuracy, model S achieves approximately 37% compared to model L’s
32%. Similarly, top-5 accuracy reaches 72% for model S versus 68% for model L.
These performance values align with ranges reported in the literature (table 4.4).
Both models demonstrate clear upward trends in classification performance.
The gap between top-1 and top-5 accuracies underscores the complexity of tree
species classification, where differences between species can be minimal. The
inferior linear probing performance of model L can also be attributed to the
higher dimensionality of the feature vectors extracted from the model (384 versus
1024 dimensions per token), which penalizes linear classification methods due to
the curse of dimensionality.

Gridsearch

Figure 4.9: Pre-training gridsearch: reconstruction loss on the validation split.

52



4.1 Pipelines implementation

Figure 4.10: Pre-training gridsearch: linear probing top 1.

Figure 4.11: Pre-training gridsearch: linear probing top 5.

53



4 Results and discussion

To determine optimal parameters for a complete model S training run, a grid
search experiment was conducted using 50-epoch trials to explore parameter
ranges identified from previous exploratory runs (table 4.6). The literature dataset
was excluded from this experiment, while a binary parameter controlled the
inclusion or exclusion of the synthetic dataset (denoted as synTrue and synFalse
in figs. 4.9 to 4.11). This design enabled assessment of feature transferability when
learning exclusively on ALS data and evaluation of the contribution of purely
synthetic trees.

Hyperparameter Values

Learning rate 1× 10−4, 5× 10−5

Batch size 512, 256

Number of points 1024, 2048

Synthetic data inclusion True, False

Total combinations 16

Table 4.6: Gridsearch parameter space configuration.

In fig. 4.9, three distinct groups of experiments are identifiable based on their
reconstruction loss performance. The upper group comprises exclusively runs
without the synthetic dataset component. The inferior linear probingperformance
of these runs demonstrates that the synthetic component, despite being entirely
artificial, provides substantial benefits for representation learning.

The middle group can be subdivided into two categories: the upper subgroup
consists of runs using 1024 points without synthetic data, resulting in higher re-
construction losses compared to the lower configurations. The lower subgroup
combines two experimental conditions: runs with 1024 points that include syn-
thetic trees, and pure ALS runs using 2048 points.

The lowest group consists exclusively of runs incorporating both the synthetic
component and 2048 points, achieving the most favorable reconstruction loss
values across all configurations tested.

The linear probing results are likely biased because runs with 2048 points utilize
token sequences of double length, resulting in higher feature vector dimensional-
ity and consequently suffering from the curse of dimensionality. Nevertheless, the
parameter combination of learning rate 1× 10−4, batch size 256, 1024 points, and
synthetic dataset inclusion (bold line in figs. 4.10 and 4.11) demonstrated superior
performance and was developed further (section 4.2.2).

54



4.1 Pipelines implementation

Further experiments

Figure 4.12: Pre-training trials: reconstruction loss on the validation split.

Figure 4.13: Pre-training trials: linear probing top 1.

55



4 Results and discussion

Selected parameter combinations from the grid search were extended to longer
training runs while maintaining the learning rate at 1 × 10−4 and batch size at
256. The literature dataset remained excluded from these experiments. The
best performing configuration (section 4.2.2), trained on the complete dataset
including literature data, appears in bold for reference. fig. 4.12 demonstrates
that all configurations encountered divergence problems at some point, with runs
including the synthetic dataset diverging earlier than those without it. Among
runs using identical data compositions, configurations with 2048 points diverged
before those using 1024 points. As a general consequence, model performance
degraded (fig. 4.13).

Divergence issues represented a persistent challenge throughout this work. Anal-
ysis identified three most likely causes:

1. Learning rate too high: excessive learning rates can cause gradient updates
to overshoot optimal parameter values, leading to unstable training dynam-
ics. Thiswas sometimes the case andwas addressed by reducing the learning
rate.

2. NaN values in input data or computational operations: this issue affected 3
out of 178’640 point clouds in the pre-training dataset. These point clouds
contained duplicate centers after FPS, causing division by zero in the original
RDP calculation (eq. (3.8)). These problematic point clouds were removed
from the dataset, and a small epsilon value was added to the eq. (3.8) denom-
inator (similar to eq. (4.2)) to enhance numerical stability.

3. Outlier bursts in input data: this represents the most likely explanation for
the divergences observed in fig. 4.12. Although batch composition is ran-
domized, the distribution shift between datasets, particularly between ALS
and synthetic point clouds, is considerable. Batches with high concentra-
tions of either dataset type could destabilize training, potentially explaining
why runs including synthetic data diverge first. Among runs excluding syn-
thetic data, the 2048-point configuration operates at higher detail levels
and becomes more susceptible to ALS dataset outliers than the 1024-point
configuration.

AMP emerged as a significant contributor to divergence dynamics. Given these
models’ relatively large size and low learning rates, gradients remain generally
small. When NaN values or outlier bursts occur (events 2 and 3 above), the AMP
scale factor, which is initially large to compensate for small gradients, must be
sharply reduced to prevent gradient explosion. This scale reduction, triggered by
only a few problematic samples, destabilizes the entire training process, which
subsequently restabilizes at a higher loss baseline. The role of AMP in this issue
was evaluated through fig. 4.14, where two identical experiments - one with AMP
enabled and one without (corresponding to the best Model S run in section 4.2.2) -
demonstrate that the AMP-free configuration avoids divergence. The evolution of
gradient norms and AMP scaling factors are displayed in figs. 4.15 and 4.16.

56



4.1 Pipelines implementation

Figure 4.14: Divergence issue: reconstruction loss comparison between identical runs with and
without AMP.

Figure 4.15: Divergence issue: gradients norm.

Figure 4.16: Divergence issue: AMP scale.
57



4 Results and discussion

4.2.3 Post-pre-training

Figure 4.17: Post-pre-training: classification accuracy on the validation split.

Figure 4.18: Post-pre-training: linear probing top 1.

Model Epochs Batch size LR schedule Points Groups

L 100 256 peak 1× 10−4, warmup 10ep, cycle 100ep 1024 64

S 100 256 peak 1× 10−4, warmup 10ep, cycle 100ep 1024 64

Table 4.7: Post-pre-training configurations.

58



4.1 Pipelines implementation

Figure 4.19: Post-pre-training: linear probing top 5.

The post-pre-training stage proceeded smoothly with minimal convergence is-
sues, likely because unstable configurations prone to divergence had already been
eliminated during the pre-training phase. Models L and S were trained with iden-
tical regimes (table 4.7) and achieved comparable accuracy on the validation split
(fig. 4.17). Both configurations demonstrated substantial improvements in linear
probing performance, with approximately 10% gains over their pre-training base-
lines (figs. 4.18 and 4.19). Model L continued to exhibit consistently inferior linear
probing performance compared to model S, attributable to the higher dimen-
sionality of its feature representations and the associated curse of dimensionality
effects in linear classification.

59



4 Results and discussion

4.2.4 Fine-tuning

Best runs

Figure 4.20: Fine-tuning: classification accuracy on the validation split.

Figure 4.21: Fine-tuning: F1 score on the validation split.

60



4.1 Pipelines implementation

Parameter Model L Model S

Epochs 300 300

Batch size 128 32

Peak learning rate 1× 10−4 1× 10−4

Warmup epochs 10 10

Cycle length 300 300

Points per sample 2048 2048

Groups 128 128

Loss function Classification (unweighted) + reconstruction

Table 4.8: Fine-tuning configurations.

During fine-tuning, both model configurations demonstrated substantial perfor-
mance improvements throughout the 300-epoch training period. The classifica-
tion accuracy trajectories (fig. 4.20) show slightly different learning dynamics
between the two model configurations. Model S exhibits rapid initial improve-
ment, achieving approximately 70% validation accuracywithin the first 150 epochs
before stabilizing around this performance level. In contrast, model L demon-
strates a more gradual but sustained improvement pattern, ultimately surpassing
Model S and reaching approximately 75% validation accuracy by the training con-
clusion. This better performance of the larger model during fine-tuning contrasts
with the linear probing results observed in previous stages, suggesting that the
additional model capacity becomes beneficial when the full model parameters
are updated rather than when only a linear classifier is trained on frozen features.
The F1 score evolution (fig. 4.21) follows a comparable pattern.

According to the training configurations (table 4.5), bothmodels utilize 2048 points
and 128 groups, doubling the resolution compared to the pre-training and post-
pre-training stages. This increased resolution enables the models to leverage
the higher point density available in the FOR-Species20K dataset, particularly
from ground-based scanning platforms. Following an additional grid search,
a reduced BS of 32 proved beneficial for model S, enabling better exploration
of the loss landscape. However, this configuration proved too destabilizing for
model L, which necessitated a higher BS. The optimal results were achieved by
combining both classification and reconstruction objectives, while the weighted
loss formulation was not employed.

To assess whether the models retained potential for continued learning, fig. 4.22
reveals that validation loss for bothmodels began increasing, indicating overfitting
and suggesting that learning capacity had been reached. Model S exhibits partic-
ularly pronounced overfitting characteristics, demonstrating elevated training
accuracies (fig. 4.23) coupled with increasing validation loss. The larger capacity
of model L appears to provide a regularizing effect, mitigating overfitting behavior.

61



4 Results and discussion

Figure 4.22: Fine-tuning: classification loss on the validation split.

Figure 4.23: Fine-tuning: classification accuracy on the training split.

62



4.1 Pipelines implementation

Spectral adapters (PEFT)

Figure 4.24: Fine-tuning with adapters (PEFT): classification accuracy on the validation split.

Figure 4.25: Fine-tuning with adapters (PEFT): F1 score on the validation split.

Experiments utilizing PointGST’s spectral adapterswere conducted acrossmultiple
configurations. In figs. 4.24 and 4.25, model S and model L serve as reference
baselines from section 4.2.4. "Model S adapt" represents the post-pre-trained
model from section 4.2.3, while "PointGPT L adapt" corresponds to the post-pre-
trained model from the PointGPT paper. Both configurations employed fewer
than 1% of total model parameters as tunable parameters.

63



4 Results and discussion

While poor performance from "PointGPT L adapt" was anticipated due to its
training on objects and indoor/outdoor urban scenes - representing a substantial
domain gap from trees - the suboptimal performance of "model S adapt" was
unexpected. Model S adapt achieved approximately 50% accuracy but with sub-
stantially better F1 scores. The poor performance can be attributed to several
factors:

1. Spectral domain patterns may be absent or insufficiently discriminative.
Given the high degree of noisiness in subsampled tree point clouds, spectral
decomposition likely fails to produce meaningful patterns. Trees at this
resolution lack the simpler geometric surfaces (planar, curved, sharp, thin,
etc.) that spectral methods typically capture. Instead, tree crown features
at these point densities likely generate similar spectral components across
species, with meaningful differentiation potentially restricted to broad mor-
phological categories such as deciduous versus coniferous trees.

2. The inherent capacity of adapter layers inserted into the model may be
insufficient, causing underfitting through inadequate learning capability.

3. The pre-training and post-pre-training stages may contribute limited trans-
ferable representations, resulting in insufficient frozen knowledge for
adapter layers to leverage effectively. However, this hypothesis receives
partial contradiction from the experimental evidence presented in figs. 4.27
and 4.28.

"PointGPT no gen" represents a post-pre-trained model from the PointGPT paper
fine-tuned without the generative task. This configuration demonstrated rapid
improvement during the initial 100 epochs before stagnating and triggering early
stopping after 30 additional epochs. Nevertheless, this result suggests that pre-
training functions primarily as model initialization in this context, consistent
with point 3 above, indicating only marginal tree-specific knowledge acquisition
by the fine-tuning stage.

64



4.1 Pipelines implementation

Sequence length

Figure 4.26: Fine-tuning: classification accuracy on the validation split for models with different
token sequence lengths.

This series of experiments was designed to assess model behavior when con-
fronted with changes in token sequence length. During pre-training, the model is
trained on 1024 points using 64 groups of 32 points each. Since 64×32 = 2048, point
groups overlap and reconstruction in the generative task remains predominantly
partial. This configuration means that attention patterns become fitted to this
specific sequence length, as the attention mask size in transformer blocks cor-
responds to this length. When sequence length doubles, these learned patterns
face disruption since the attention mask itself doubles in size.

To evaluate this effect, fig. 4.26 presents experiments varying both the number
of groups and point count. Despite attention mask disruption, longer sequence
lengths prove beneficial to performance. Conversely, reducing group overlap
(64 groups with 2048 points, where 64×32 = 2048 means minimal group overlap)
detriments performance. Investigation reveals that although absolute positional
relationships become disrupted, feature representations and relative attention pat-
terns remain preserved. Consequently, doubling sequence length provides more
advantages through higher resolution information than disadvantages through
pattern disruption.

However, the extent to which sequence length can safely vary remains limited, as
sequence length itself can become overfitted [106]. An alternative approach for
incorporating additional information could involve increasing group size rather
than group number. Experimental evidence suggests this represents a failing
strategy [107].

65



4 Results and discussion

Further experiments

Figure 4.27: Fine-tuning: classification accuracy on the validation split for different model S con-
figurations.

Figure 4.28: Fine-tuning: F1 score on the validation split for different model S configurations.

The final series of experiments evaluated miscellaneous configurations (figs. 4.27
and 4.28), with model S serving as the reference model from section 4.2.3. An
uninitialized "model S fresh" configuration with parameters set to negative infinity
was trained from scratch directly on the FOR-Species20K dataset. Considering the
analysis presented in section 4.2.4, although knowledge acquired after pre-training
and post-pre-training may be somewhat limited, training from scratch

66



4.1 Pipelines implementation

fails to achieve meaningful performance and encounters significant divergence
issues. This confirms that SSL provides substantial benefits, although the precise
extent of these benefits remains unclear.

Introducing the weighted loss formulation outlined in section 4.1.1 proved ineffec-
tive, as demonstrated by the "model S wloss" run, which was terminated due to
inferior performance compared to baseline model S. This finding was, however,
partially contradicted by the "model S no post, no gen, wloss" run. This configura-
tion utilized model S from the pre-training stage without post-pre-training and
was fine-tuned without the generative task, achieving final accuracy and F1 scores
not far frommodel S. This result requires closer analysis, since model S exhibited
overfitting during later training stages (section 4.2.2). Excluding these overfit-
ting periods, its performance remained consistently superior and is therefore
considered the preferred approach.

The final comparison examines training with (model S) and without ("model S no
gen") the auxiliary generative task. As demonstrated in figs. 4.27 and 4.28, omitting
the generative task is an inferior approach, as the generative component appears
to provide regularization benefits. This finding is interesting, since knowledge
acquired for the generative task could potentially interfere with classification
learning when gradients from the generator propagate back into the extractor.
Indeed, the PointGPT paper reports improved classification performance with
deeper generator architectures. This gradient backpropagationmay paradoxically
serve as the source of the regularization benefits identified above, suggesting that
the conflict between generative and discriminative objectives actually improves
model generalization.

67



4 Results and discussion

4.3 Best model

Model L from section 4.2.4, now designated as TreeGPT, represents the best-
performing configuration and undergoes detailed performance analysis. Since
inference results on the FOR-Species20K test split have not been submitted to the
official benchmark, the following analyses are conducted on the validation split
described in section 4.1.1.

Figure 4.29: Best model: confusion matrix.

Method TreeGPT (this work) DetailView [99] Ensemble PointNet++

Dataset Validation split FOR-Species20K test FOR-Species20K test

Accuracy 76% 79% 76%

Precision 0.79 0.81 0.77

Recall 0.67 0.79 0.76

F1-score 0.67 0.79 0.75

Note This work Best overall Best point-based method

Table 4.9: Performance comparison between TreeGPT and leading methods. TreeGPT results are
reported on the validation split of this work’s dataset, while benchmark results are on
the official FOR-Species20K test split, limiting direct comparability.

68



4.1 Pipelines implementation

Figure 4.30: Best model: accuracy by species.

Figure 4.31: Best model: accuracy by data type.

Figure 4.32: Best model: accuracy by tree height.

69



4 Results and discussion

As an additional baseline, a random forest classifier tuned for this task achieves
40% accuracy when trained on the training split and evaluated on the validation
split.

Despite training on a heavily imbalanced dataset without balancing measures,
TreeGPT does not excessively penalize species with lower representation (fig. 4.30).
Good accuracy is achieved even for species with counts 10 times lower than the
most numerous ones.

Performance across platform types (fig. 4.31) and tree heights (fig. 4.32) follows
the same trends as benchmark models in the dataset paper [77]. TLS performs
worst despite its high scanning fidelity, while MLS achieves the best performance.
Accuracy increases with tree height, which is expected since taller trees are typi-
cally more mature and have fully developed the distinctive characteristics that
define their species.

According to table 4.9, TreeGPT achieves performance comparable to Ensemble
PointNet++, the leading point-cloud-based method on the benchmark. TreeGPT
achieves final training and validation classification loss values of approximately
0.29 and 1.21, respectively. DetailView, which employs a similar dataset split
methodology as this study, achieves corresponding loss values of 0.30 and 0.76
(fig. 3.13). This comparison reveals that while TreeGPT achieves competitive clas-
sification accuracy, it exhibits higher validation loss than DetailView, suggesting
potential overfitting when compared to the latter.

The TreeGPT approach shows potential for further optimization to surpass this
performance and rival image-based baselines. TreeGPThas not yet been trained or
evaluated on higher point densities. Training on higher densities could enable the
model to learn patterns imperceptible at lower densities, potentially improving
robust knowledge transfer to lower-density scenarios—a direction not explored in
the current work, which took the opposite approach. Furthermore, no ensemble
or voting mechanism has been implemented, which could augment performance
by several percentage points.

From a computational efficiency standpoint, TreeGPT exhibits significant compu-
tational demands in its L configuration, despite this being the best-performing
variant. This trade-off could pose challenges for downstreamapplications, depend-
ing on computational cost considerations. The large parameter count contributes
to model robustness, and few-shot performance is expected to be superior based
on corresponding results in the PointGPT paper. This robustness enables fur-
ther fine-tuning on species with limited data. A hybrid approach combining a
large primary model with smaller models fine-tuned on rare species could prove
effective.

70



5 Conclusions

This thesis investigated the application of SSL with transformer architectures to
tree species classification from LiDAR point clouds. A custom dataset totaling
over 200’000 individual tree instances across multiple platforms and geographic
regions was assembled. The integration of real ALS data from Canton Neuchâtel
with synthetic augmentations, combined with literature datasets from diverse
acquisition platforms, created a foundation for SSL pre-training.

A three-stage training approach for tree species classification was implemented
using PointGPT. Approximately 300 training runs were conducted to develop the
complete pipeline and assess model potential across Small (S), Base (B), and Large
(L) configurations.

The pre-training stage demonstrated that model S consistently outperformed
model L in linear probing evaluations, achieving 37% top-1 accuracy compared to
32% for Model L, and 72% versus 68% top-5 accuracy respectively. The inferior
linear probing performance of model L can be most likely attributed to the higher
dimensionality of its feature vectors (1024 versus 384 dimensions per token), which
penalizes linear classification methods due to the curse of dimensionality. Grid
search experiments revealed that synthetic data inclusion provides substantial
benefits for representation learning, while configurations excluding synthetic
components showed inferior performance.

Training stability emerged as a constant challenge, with divergence issues affect-
ingmultiple configurations. These divergenceswere attributed to the combination
of excessive learning rates, NaN values from duplicate point centers, and out-
lier bursts made worse by AMP scaling dynamics. The post-pre-training stage
achieved approximately 10% improvements in linear probing performance over
pre-training baselines for both model configurations.

Fine-tuning results demonstrated that model L ultimately achieved better perfor-
mance despite its poor linear probing results in earlier stages, reaching 75% vali-
dation accuracy compared to 70% formodel S. Experiments with spectral adapters
achieved only 50% accuracy, indicating limited effectiveness of the PEFT approach
in this context. The final TreeGPT model (model L) achieved 75% accuracy, 0.79
precision, 0.67 recall, and 0.67 F1-score on the validation split, demonstrating
performance comparable to Ensemble PointNet++, the leading point-cloud-based
method on the FOR-Species20K benchmark. Despite training on heavily imbal-
anced data without explicit balancing measures, the model maintained good

71



5 Conclusions

performance across species with varying representation levels. Performance pat-
terns across platform types and tree heights aligned with established benchmark
trends, with inference on MLS clouds getting the best performance and accuracy
increasing with tree height.

Training from scratch without pre-training failed to achieve meaningful perfor-
mance, confirming the benefits provided by SSL. Several technical optimizations
where implemented to attain faster processing speeds, shorter loading times, and
smaller storage requirements.

Future research directions should focus on training on higher point densities, as
it is the most immediate opportunity for performance enhancement across all
density ranges. The implementation of voting and ensemble methods could also
provide several percentage points of performance improvement with relatively
modest implementation effort.

The successful adaptation of language model pre-training paradigms to geometric
data shows the versatility of transformer architectures. The insights gained re-
garding training stability, model scaling, and synthetic data integration contribute
to the development of further robust point cloud processing systems.

In conclusion, this thesis establishes TreeGPT as a viable approach for tree species
classification from LiDAR point clouds. It contributes to the further development
and application of SSL techniques on point clouds through practical technical
experiences and insights.

72



Declaration of Authorship

I hereby declare that I have written this thesis independently and have not used
any sources or aids other than those acknowledged.

All statements taken from other writings, either literally or in essence, have been
marked as such.

I hereby agree that the present work may be reviewed in electronic form using
appropriate software.

August 7, 2025
I. Gasparini

73





Bibliography

[1] U.-B. Brändli,M. Abegg, andB. Allgaier Leuch, Schweizerisches Landesforstin-
ventar. Ergebnisse der vierten Erhebung 2009–2017, en, 2020. DOI: 10.16904/
ENVIDAT.146.

[2] Bundesamt für Umwelt, “Jahrbuch Wald und Holz 2024,” Bundesamt für
Umwelt BAFU, Bern, Switzerland, Tech. Rep. UZ-2410-D, 2024.

[3] B.Muys, “Forest EcosystemServices,” en, inLife on Land,W. Leal Filho,A.M.
Azul, L. Brandli, A. Lange Salvia, and T. Wall, Eds., Cham: Springer Inter-
national Publishing, 2021, pp. 386–395, ISBN: 9783319959801 9783319959818.
DOI: 10.1007/978-3-319-95981-8_129.

[4] Bundesamt fürUmwelt (BAFU), “Waldpolitik: Ziele undMassnahmen2021–2024.
Für eine nachhaltige Bewirtschaftung des Schweizer Waldes,” German,
Bundesamt für Umwelt, Bern, Umwelt-Info Wald & Holz 2119, 2021, p. 61.

[5] Bundesversammlungder SchweizerischenEidgenossenschaft,Bundesbeschluss
zur Finanzierung von Aufgaben im Umweltbereich in den Jahren 2025–2028,
German, 2024.

[6] C. Fischer and B. Traub, Eds., Swiss National Forest Inventory – Methods
and Models of the Fourth Assessment (Managing Forest Ecosystems), en.
Cham: Springer International Publishing, 2019, vol. 35, ISBN: 9783030192921
9783030192938. DOI: 10.1007/978-3-030-19293-8.

[7] P. Bürgi, A. Müller, B. Pauli, and C. Rosset, “Forstwirtschaftliches Testbe-
triebsnetz der Schweiz: Ergebnisse der Jahre 2020–2022,” Bundesamt für
Statistik (BFS), Neuchâtel, Tech. Rep. 1241-2200, 2024, p. 52.

[8] A.Holzinger, J. Schweier, C. Gollob, et al., “From Industry 5.0 to Forestry 5.0:
Bridging the gap with Human-Centered Artificial Intelligence,” en, Current
Forestry Reports, vol. 10, no. 6, pp. 442–455, Sep. 2024, ISSN: 2198-6436. DOI:
10.1007/s40725-024-00231-7.

[9] P. C. Pandey and P. Arellano, Eds., Advances in Remote Sensing for Forest
Monitoring, en, 1st ed. Wiley, Nov. 2022, ISBN: 9781119788126 9781119788157.
DOI: 10.1002/9781119788157.

[10] T. Zohdi, “A machine-learning enabled digital-twin framework for next
generation precision agriculture and forestry,” en, Computer Methods in
Applied Mechanics and Engineering, vol. 431, p. 117 250, Nov. 2024, ISSN:
00457825. DOI: 10.1016/j.cma.2024.117250.

[11] B. Xiang, M. Wielgosz, T. Kontogianni, et al., “Automated forest inventory:
Analysis of high-density airborne LiDAR point clouds with 3D deep learn-

75

https://doi.org/10.16904/ENVIDAT.146
https://doi.org/10.16904/ENVIDAT.146
https://doi.org/10.1007/978-3-319-95981-8_129
https://doi.org/10.1007/978-3-030-19293-8
https://doi.org/10.1007/s40725-024-00231-7
https://doi.org/10.1002/9781119788157
https://doi.org/10.1016/j.cma.2024.117250


Bibliography

ing,” en, Remote Sensing of Environment, vol. 305, p. 114 078, May 2024, ISSN:
00344257. DOI: 10.1016/j.rse.2024.114078.

[12] J. Shao, Y.-C. Lin, C. Wingren, et al., “Large-scale inventory in natural
forests with mobile LiDAR point clouds,” en, Science of Remote Sensing,
vol. 10, p. 100 168, Dec. 2024, ISSN: 26660172. DOI: 10.1016/j.srs.2024.
100168.

[13] D. Laino, C. Cabo, C. Prendes, et al., “3DFin: a software for automated 3D
forest inventories from terrestrial point clouds,” en, Forestry: An Interna-
tional Journal of Forest Research, vol. 97, no. 4, F. Fassnacht, Ed., pp. 479–496,
Aug. 2024, ISSN: 0015-752X, 1464-3626. DOI: 10.1093/forestry/cpae020.

[14] W. G. Rodrigues, G. S. Vieira, C. D. Cabacinha, R. F. Bulcão-Neto, and
F. Soares, “Applications of artificial intelligence and LiDAR in forest in-
ventories: A Systematic Literature Review,” en, Computers and Electrical
Engineering, vol. 120, p. 109 793, Dec. 2024, ISSN: 00457906. DOI: 10.1016/j.
compeleceng.2024.109793.

[15] M.Kulicki, C. Cabo, T. Trzciński, J. Będkowski, andK. Stereńczak, “Artificial
Intelligence and Terrestrial Point Clouds for ForestMonitoring,” en, Current
Forestry Reports, vol. 11, no. 1, p. 5, Dec. 2024, ISSN: 2198-6436. DOI: 10.1007/
s40725-024-00234-4.

[16] Schweizerische Eidgenossenschaft, “Strategie für offene Verwaltungsdaten
inder Schweiz 2019–2023 (Open-Government-Data-Strategie,OGD-Strategie),”
German, Bundesblatt (BBl), vol. 2019, no. 2018-2782, pp. 879–894, 2019.

[17] R. Abreu-Dias, J. M. Santos-Gago, F. Martín-Rodríguez, and L. M. Álvarez-
Sabucedo, “Advances in the Automated Identification of Individual Tree
Species: A Systematic Review of Drone- and AI-Based Methods in Forest
Environments,” en, Technologies, vol. 13, no. 5, p. 187, May 2025, ISSN: 2227-
7080. DOI: 10.3390/technologies13050187.

[18] O. Reisi Gahrouei, J.-F. Côté, P. Bournival, P. Giguère, and M. Béland,
“Comparison of Deep and Machine Learning Approaches for Quebec Tree
Species Classification Using a Combination of Multispectral and LiDAR
Data,” en, Canadian Journal of Remote Sensing, vol. 50, no. 1, p. 2 359 433, Dec.
2024, ISSN: 0703-8992, 1712-7971. DOI: 10.1080/07038992.2024.2359433.

[19] D. Seidel, P. Annighöfer, A. Thielman, et al., “Predicting Tree Species From
3D Laser Scanning Point Clouds Using Deep Learning,” Frontiers in Plant
Science, vol. 12, p. 635 440, Feb. 2021, ISSN: 1664-462X. DOI: 10.3389/fpls.
2021.635440.

[20] J. Gui, T. Chen, J. Zhang, et al., “A Survey on Self-Supervised Learning:
Algorithms, Applications, and Future Trends,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 46, no. 12, pp. 9052–9071, Dec. 2024,
ISSN: 0162-8828, 2160-9292, 1939-3539. DOI: 10.1109/TPAMI.2024.3415112.

[21] X. Yu, L. Tang, Y. Rao, T. Huang, J. Zhou, and J. Lu, Point-BERT: Pre-training
3D Point Cloud Transformers with Masked Point Modeling, 2021. DOI: 10.
48550/ARXIV.2111.14819.

76

https://doi.org/10.1016/j.rse.2024.114078
https://doi.org/10.1016/j.srs.2024.100168
https://doi.org/10.1016/j.srs.2024.100168
https://doi.org/10.1093/forestry/cpae020
https://doi.org/10.1016/j.compeleceng.2024.109793
https://doi.org/10.1016/j.compeleceng.2024.109793
https://doi.org/10.1007/s40725-024-00234-4
https://doi.org/10.1007/s40725-024-00234-4
https://doi.org/10.3390/technologies13050187
https://doi.org/10.1080/07038992.2024.2359433
https://doi.org/10.3389/fpls.2021.635440
https://doi.org/10.3389/fpls.2021.635440
https://doi.org/10.1109/TPAMI.2024.3415112
https://doi.org/10.48550/ARXIV.2111.14819
https://doi.org/10.48550/ARXIV.2111.14819


Bibliography

[22] Y. Pang, W. Wang, F. E. H. Tay, W. Liu, Y. Tian, and L. Yuan,Masked Autoen-
coders for Point Cloud Self-supervised Learning, 2022. DOI: 10.48550/ARXIV.
2203.06604.

[23] R. Zhang, Z. Guo, R. Fang, et al., Point-M2AE: Multi-scale Masked Autoen-
coders for Hierarchical Point Cloud Pre-training, 2022. DOI: 10.48550/ARXIV.
2205.14401.

[24] G. Chen, M. Wang, Y. Yang, K. Yu, L. Yuan, and Y. Yue, PointGPT: Auto-
regressively Generative Pre-training from Point Clouds, 2023. DOI: 10.48550/
ARXIV.2305.11487.

[25] A. Vaswani, N. Shazeer, N. Parmar, et al., Attention Is All You Need, 2017.
DOI: 10.48550/ARXIV.1706.03762.

[26] K. Han, Y. Wang, H. Chen, et al., “A Survey on Vision Transformer,” IEEE
Transactions on PatternAnalysis andMachine Intelligence, vol. 45, no. 1, pp. 87–
110, Jan. 2023, ISSN: 0162-8828, 2160-9292, 1939-3539. DOI: 10.1109/TPAMI.
2022.3152247.

[27] T. B. Brown, B.Mann,N. Ryder, et al., LanguageModels are Few-Shot Learners,
2020. DOI: 10.48550/ARXIV.2005.14165.

[28] OpenAI, J. Achiam, S. Adler, et al., GPT-4 Technical Report, 2023. DOI: 10.
48550/ARXIV.2303.08774.

[29] J. Kaplan, S. McCandlish, T. Henighan, et al., Scaling Laws for Neural Lan-
guage Models, 2020. DOI: 10.48550/ARXIV.2001.08361.

[30] L. Shaheen, B. Rasheed, and M. Mazzara, “Self-Supervised Learning for
Precise Individual Tree Segmentation in Airborne LiDAR Point Clouds,”
IEEE Access, vol. 13, pp. 70 895–70 908, 2025, ISSN: 2169-3536. DOI: 10.1109/
ACCESS.2025.3563363.

[31] F. Wang and M. Bryson, “Tree Segmentation and Parameter Measurement
from Point Clouds Using Deep and Handcrafted Features,” en, Remote
Sensing, vol. 15, no. 4, p. 1086, Feb. 2023, ISSN: 2072-4292. DOI: 10.3390/
rs15041086.

[32] L. Shaheen, B. Rasheed, and M. Mazzara, “Tree species detection using
hyperspectral and Lidar data: A novel self-supervised learning approach,”
Computer Research andModeling, vol. 16, no. 7, pp. 1747–1763, Dec. 2024, ISSN:
20767633, 20776853. DOI: 10.20537/2076-7633-2024-16-7-1747-1763.

[33] A.Wehr andU.Lohr, “Airborne laser scanning—an introduction andoverview,”
en, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 54, no. 2-3,
pp. 68–82, Jul. 1999, ISSN: 09242716. DOI: 10.1016/S0924-2716(99)00011-
8.

[34] M. A. Lefsky, W. B. Cohen, G. G. Parker, and D. J. Harding, “Lidar Remote
Sensing for Ecosystem Studies,” en, BioScience, vol. 52, no. 1, p. 19, 2002,
ISSN: 0006-3568. DOI: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.
CO;2.

[35] C. Mallet and F. Bretar, “Full-waveform topographic lidar: State-of-the-art,”
en, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 64, no. 1, pp. 1–
16, Jan. 2009, ISSN: 09242716. DOI: 10.1016/j.isprsjprs.2008.09.007.

77

https://doi.org/10.48550/ARXIV.2203.06604
https://doi.org/10.48550/ARXIV.2203.06604
https://doi.org/10.48550/ARXIV.2205.14401
https://doi.org/10.48550/ARXIV.2205.14401
https://doi.org/10.48550/ARXIV.2305.11487
https://doi.org/10.48550/ARXIV.2305.11487
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.1109/TPAMI.2022.3152247
https://doi.org/10.1109/TPAMI.2022.3152247
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2001.08361
https://doi.org/10.1109/ACCESS.2025.3563363
https://doi.org/10.1109/ACCESS.2025.3563363
https://doi.org/10.3390/rs15041086
https://doi.org/10.3390/rs15041086
https://doi.org/10.20537/2076-7633-2024-16-7-1747-1763
https://doi.org/10.1016/S0924-2716(99)00011-8
https://doi.org/10.1016/S0924-2716(99)00011-8
https://doi.org/10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
https://doi.org/10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
https://doi.org/10.1016/j.isprsjprs.2008.09.007


Bibliography

[36] M. Maltamo, E. Næsset, and J. Vauhkonen, Eds., Forestry Applications of
Airborne Laser Scanning: Concepts and Case Studies (Managing Forest Ecosys-
tems), en.Dordrecht: SpringerNetherlands, 2014, vol. 27, ISBN: 9789401786621
9789401786638. DOI: 10.1007/978-94-017-8663-8.

[37] X. Li, C. Liu, Z.Wang, X. Xie, D. Li, and L. Xu, “Airborne LiDAR: state-of-the-
art of system design, technology and application,”Measurement Science and
Technology, vol. 32, no. 3, p. 032 002, Mar. 2021, ISSN: 0957-0233, 1361-6501.
DOI: 10.1088/1361-6501/abc867.

[38] J. Shan and C. K. Toth, Eds., Topographic Laser Ranging and Scanning: Prin-
ciples and Processing, en, 2nd ed. Second edition. | Boca Raton : Taylor &
Francis, CRC Press, 2018.: CRC Press, Feb. 2018, ISBN: 9781315154381. DOI:
10.1201/9781315154381.

[39] J. Muhojoki, T. Hakala, A. Kukko, H. Kaartinen, and J. Hyyppä, “Compar-
ing positioning accuracy of mobile laser scanning systems under a forest
canopy,” en, Science of Remote Sensing, vol. 9, p. 100 121, Jun. 2024, ISSN:
26660172. DOI: 10.1016/j.srs.2024.100121.

[40] P. S. Thenkabail, Remote Sensing Handbook, Volume IV: Forests, Biodiversity,
Ecology, LULC, and Carbon, en, 2nd ed. Boca Raton: CRC Press, Oct. 2024,
ISBN: 9781003541172. DOI: 10.1201/9781003541172.

[41] P. Wilkes, M. Disney, J. Armston, et al., “TLS2trees : A scalable tree seg-
mentation pipeline for <span style="font-variant:small-caps;">TLS</span>
data,” en,Methods in Ecology and Evolution, vol. 14, no. 12, pp. 3083–3099,
Dec. 2023, ISSN: 2041-210X, 2041-210X. DOI: 10.1111/2041-210X.14233.

[42] M. Wielgosz, S. Puliti, B. Xiang, K. Schindler, and R. Astrup, “Segmen-
tAnyTree: A sensor and platform agnostic deep learning model for tree
segmentation using laser scanning data,” en, Remote Sensing of Environment,
vol. 313, p. 114 367, Nov. 2024, ISSN: 00344257. DOI: 10.1016/j.rse.2024.
114367.

[43] J. Henrich, J. van Delden, D. Seidel, T. Kneib, and A. Ecker, “TreeLearn: A
deep learning method for segmenting individual trees from ground-based
LiDAR forest point clouds,” 2023. DOI: 10.48550/ARXIV.2309.08471.

[44] L. Ruoppa, O. Oinonen, J. Taher, et al., Unsupervised deep learning for se-
mantic segmentation of multispectral LiDAR forest point clouds, 2025. DOI:
10.48550/ARXIV.2502.06227.

[45] Y. Bai, J.-B. Durand, G. Vincent, and F. Forbes, “Semantic segmentation
of sparse irregular point clouds for leaf/wood discrimination,” 2023. DOI:
10.48550/ARXIV.2305.16963.

[46] M.Wielgosz, S. Puliti, P.Wilkes, andR.Astrup, “Point2Tree(P2T)—Framework
for Parameter Tuning of Semantic and Instance Segmentation Used with
Mobile Laser Scanning Data in Coniferous Forest,” en, Remote Sensing,
vol. 15, no. 15, p. 3737, Jul. 2023, ISSN: 2072-4292. DOI: 10.3390/rs15153737.

[47] K.Wołk andM. S. Tatara, “AReviewof Semantic Segmentation and Instance
Segmentation Techniques in Forestry Using LiDAR and Imagery Data,”

78

https://doi.org/10.1007/978-94-017-8663-8
https://doi.org/10.1088/1361-6501/abc867
https://doi.org/10.1201/9781315154381
https://doi.org/10.1016/j.srs.2024.100121
https://doi.org/10.1201/9781003541172
https://doi.org/10.1111/2041-210X.14233
https://doi.org/10.1016/j.rse.2024.114367
https://doi.org/10.1016/j.rse.2024.114367
https://doi.org/10.48550/ARXIV.2309.08471
https://doi.org/10.48550/ARXIV.2502.06227
https://doi.org/10.48550/ARXIV.2305.16963
https://doi.org/10.3390/rs15153737


Bibliography

en, Electronics, vol. 13, no. 20, p. 4139, Oct. 2024, ISSN: 2079-9292. DOI:
10.3390/electronics13204139.

[48] A. Bornand, M. Abegg, F. Morsdorf, and N. Rehush, “Completing <span
style="font-variant:small-caps;">3D</span> point clouds of individual trees
using deep learning,” en,Methods in Ecology and Evolution, vol. 15, no. 11,
pp. 2010–2023, Nov. 2024, ISSN: 2041-210X, 2041-210X. DOI: 10.1111/2041-
210X.14412.

[49] S. Ma, Y. Chen, Z. Li, J. Chen, and X. Zhong, “Improved Cylinder-Based
Tree Trunk Detection in LiDAR Point Clouds for Forestry Applications,”
en, Sensors, vol. 25, no. 3, p. 714, Jan. 2025, ISSN: 1424-8220. DOI: 10.3390/
s25030714.

[50] Z. Hui, L. Lin, S. Jin, Y. Xia, and Y. Y. Ziggah, “A Reliable DBH Estimation
Method Using Terrestrial LiDAR Points through Polar Coordinate Transfor-
mation and Progressive Outlier Removal,” en, Forests, vol. 15, no. 6, p. 1031,
Jun. 2024, ISSN: 1999-4907. DOI: 10.3390/f15061031.

[51] L. Breiman, “Random Forests,” en,Machine Learning, vol. 45, no. 1, pp. 5–
32, Oct. 2001, ISSN: 1573-0565. DOI: 10.1023/A:1010933404324.

[52] M. Hearst, S. Dumais, E. Osuna, J. Platt, and B. Scholkopf, “Support vector
machines,” IEEE Intelligent Systems and their Applications, vol. 13, no. 4,
pp. 18–28, Jul. 1998, ISSN: 1094-7167. DOI: 10.1109/5254.708428.

[53] M.-C. Popescu, V. E. Balas, L. Perescu-Popescu, and N. Mastorakis, “Multi-
layer perceptron and neural networks,”WSEAS Transactions on Circuits and
Systems, vol. 8, no. 7, pp. 579–588, 2009. DOI: 10.5555/1639537.1639542.

[54] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” en, in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco California USA: ACM, Aug. 2016,
pp. 785–794, ISBN: 9781450342322. DOI: 10.1145/2939672.2939785.

[55] T. Hackel, J. D. Wegner, and K. Schindler, “Contour Detection in Unstruc-
tured 3D Point Clouds,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, Jun. 2016, pp. 1610–
1618, ISBN: 9781467388511. DOI: 10.1109/CVPR.2016.178.

[56] C. Cabo, C. Ordóñez, F. Sáchez-Lasheras, J. Roca-Pardiñas, and J. De Cos-
Juez, “Multiscale Supervised Classification of Point Clouds with Urban and
Forest Applications,” en, Sensors, vol. 19, no. 20, p. 4523, Oct. 2019, ISSN:
1424-8220. DOI: 10.3390/s19204523.

[57] P. Raumonen, M. Kaasalainen, M. Åkerblom, et al., “Fast Automatic Preci-
sion Tree Models from Terrestrial Laser Scanner Data,” en, Remote Sens-
ing, vol. 5, no. 2, pp. 491–520, Jan. 2013, ISSN: 2072-4292. DOI: 10.3390/
rs5020491.

[58] Y. Guo, H.Wang, Q. Hu, H. Liu, L. Liu, andM. Bennamoun, “Deep Learning
for 3D Point Clouds: A Survey,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 43, no. 12, pp. 4338–4364, Dec. 2021, ISSN: 0162-
8828, 2160-9292, 1939-3539. DOI: 10.1109/TPAMI.2020.3005434.

79

https://doi.org/10.3390/electronics13204139
https://doi.org/10.1111/2041-210X.14412
https://doi.org/10.1111/2041-210X.14412
https://doi.org/10.3390/s25030714
https://doi.org/10.3390/s25030714
https://doi.org/10.3390/f15061031
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/5254.708428
https://doi.org/10.5555/1639537.1639542
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1109/CVPR.2016.178
https://doi.org/10.3390/s19204523
https://doi.org/10.3390/rs5020491
https://doi.org/10.3390/rs5020491
https://doi.org/10.1109/TPAMI.2020.3005434


Bibliography

[59] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once:
Unified, Real-Time Object Detection,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, Jun. 2016,
pp. 779–788, ISBN: 9781467388511. DOI: 10.1109/CVPR.2016.91.

[60] K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recog-
nition, 2015. DOI: 10.48550/ARXIV.1512.03385.

[61] D. Maturana and S. Scherer, “VoxNet: A 3D Convolutional Neural Network
for real-time object recognition,” in 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Hamburg, Germany: IEEE, Sep.
2015, pp. 922–928, ISBN: 9781479999941. DOI: 10.1109/IROS.2015.7353481.

[62] C. Choy, J. Gwak, and S. Savarese, 4D Spatio-Temporal ConvNets: Minkowski
Convolutional Neural Networks, 2019. DOI: 10.48550/ARXIV.1904.08755.

[63] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, PointNet: Deep Learning on Point Sets
for 3D Classification and Segmentation, 2016. DOI: 10.48550/ARXIV.1612.
00593.

[64] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep Hierarchical
Feature Learning on Point Sets in a Metric Space,” 2017. DOI: 10.48550/
ARXIV.1706.02413.

[65] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and L. J.
Guibas,KPConv: Flexible andDeformable Convolution for Point Clouds, arXiv:1904.08889,
Aug. 2019. DOI: 10.48550/arXiv.1904.08889.

[66] H. Zhao, L. Jiang, J. Jia, P. Torr, and V. Koltun, “Point Transformer,” in
2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal,
QC, Canada: IEEE, Oct. 2021, pp. 16 239–16 248, ISBN: 9781665428125. DOI:
10.1109/ICCV48922.2021.01595.

[67] K. Zięba-Kulawik, K. Skoczylas, P. Wężyk, J. Teller, A. Mustafa, and H. Om-
rani, “Monitoring of urban forests using 3D spatial indices based on LiDAR
point clouds and voxel approach,” en, Urban Forestry & Urban Greening,
vol. 65, p. 127 324, Nov. 2021, ISSN: 16188667. DOI: 10.1016/j.ufug.2021.
127324.

[68] R. Balestriero, M. Ibrahim, V. Sobal, et al., A Cookbook of Self-Supervised
Learning, 2023. DOI: 10.48550/ARXIV.2304.12210.

[69] N. Ding, Y. Qin, G. Yang, et al., “Parameter-efficient fine-tuning of large-
scale pre-trained language models,” en, Nature Machine Intelligence, vol. 5,
no. 3, pp. 220–235, Mar. 2023, ISSN: 2522-5839. DOI: 10.1038/s42256-023-
00626-4.

[70] N. Houlsby, A. Giurgiu, S. Jastrzebski, et al., Parameter-Efficient Transfer
Learning for NLP, 2019. DOI: 10.48550/ARXIV.1902.00751.

[71] E. J. Hu, Y. Shen, P. Wallis, et al., LoRA: Low-Rank Adaptation of Large
Language Models, 2021. DOI: 10.48550/ARXIV.2106.09685.

[72] B. Lester, R. Al-Rfou, and N. Constant, The Power of Scale for Parameter-
Efficient Prompt Tuning, 2021. DOI: 10.48550/ARXIV.2104.08691.

[73] Paperswith Code - 3DPoint CloudClassification, https://paperswithcode.com/task/3d-
point-cloud-classification.

80

https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.1109/IROS.2015.7353481
https://doi.org/10.48550/ARXIV.1904.08755
https://doi.org/10.48550/ARXIV.1612.00593
https://doi.org/10.48550/ARXIV.1612.00593
https://doi.org/10.48550/ARXIV.1706.02413
https://doi.org/10.48550/ARXIV.1706.02413
https://doi.org/10.48550/arXiv.1904.08889
https://doi.org/10.1109/ICCV48922.2021.01595
https://doi.org/10.1016/j.ufug.2021.127324
https://doi.org/10.1016/j.ufug.2021.127324
https://doi.org/10.48550/ARXIV.2304.12210
https://doi.org/10.1038/s42256-023-00626-4
https://doi.org/10.1038/s42256-023-00626-4
https://doi.org/10.48550/ARXIV.1902.00751
https://doi.org/10.48550/ARXIV.2106.09685
https://doi.org/10.48550/ARXIV.2104.08691


Bibliography

[74] D. Liang, T. Feng, X. Zhou, Y. Zhang, Z. Zou, and X. Bai, Parameter-Efficient
Fine-Tuning in Spectral Domain for Point Cloud Learning, 2024. DOI: 10 .
48550/ARXIV.2410.08114.

[75] M. Bryson, F. Wang, and J. Allworth, “Using Synthetic Tree Data in Deep
Learning-Based Tree Segmentation Using LiDAR Point Clouds,” en, Remote
Sensing, vol. 15, no. 9, p. 2380, May 2023, ISSN: 2072-4292. DOI: 10.3390/
rs15092380.

[76] A. Doosthosseini, D. Sommer, and H. Kirchner, SynForest – Synthetic Gener-
ation of LiDAR Data in Forests – News, https://paperswithcode.com/task/3d-
point-cloud-classification, 2023.

[77] S. Puliti, E. R. Lines, J. Müllerová, et al., Benchmarking tree species clas-
sification from proximally-sensed laser scanning data: introducing the FOR-
species20K dataset, 2024. DOI: 10.48550/ARXIV.2408.06507.

[78] J. Gomes, I. Campos, E. Bagnaschi, et al., “Enabling rootless Linux Contain-
ers in multi-user environments: the udocker tool,” 2017. DOI: 10.48550/
ARXIV.1711.01758.

[79] SchedMD, SlurmWorkloadManager -Documentation, https://slurm.schedmd.com/documentation.html,
2025.

[80] L. Winiwarter, A. M. Esmorís Pena, H. Weiser, et al., “Virtual laser scan-
ning with HELIOS++: A novel take on ray tracing-based simulation of topo-
graphic full-waveform 3D laser scanning,” Remote Sensing of Environment,
vol. 269, p. 112 772, Feb. 2022, ISSN: 00344257. DOI: 10.1016/j.rse.2021.
112772.

[81] N. Ravi, J. Reizenstein, D. Novotny, et al., Accelerating 3D Deep Learning with
PyTorch3D, 2020. DOI: 10.48550/ARXIV.2007.08501.

[82] C. Jim,Conda-Pack— conda-pack 0.8.1 documentation, https://conda.github.io/conda-
pack/, 2017.

[83] G. Chen, PointGPT repository, https://github.com/CGuangyan-BIT/PointGPT,
Jun. 2025.

[84] Y. Zha, J. Wang, T. Dai, B. Chen, Z. Wang, and S.-T. Xia, “Instance-aware
Dynamic Prompt Tuning for Pre-trained Point Cloud Models,” in 2023
IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France:
IEEE, Oct. 2023, pp. 14 115–14 124, ISBN: 9798350307184. DOI: 10.1109/
ICCV51070.2023.01302.

[85] X. Zhou, D. Liang, W. Xu, et al., “Dynamic Adapter Meets Prompt Tuning:
Parameter-Efficient Transfer Learning for Point Cloud Analysis,” in 2024
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Seattle, WA, USA: IEEE, Jun. 2024, pp. 14 707–14 717, ISBN: 9798350353006.
DOI: 10.1109/CVPR52733.2024.01393.

[86] Canton Neuchâtel: LiDAR Potree Viewer, https://sitn.ne.ch/lidar/.
[87] L. Jiang, H. Zhao, S. Shi, S. Liu, C.-W. Fu, and J. Jia, PointGroup: Dual-Set

Point Grouping for 3D Instance Segmentation, 2020. DOI: 10.48550/ARXIV.
2004.01658.

81

https://doi.org/10.48550/ARXIV.2410.08114
https://doi.org/10.48550/ARXIV.2410.08114
https://doi.org/10.3390/rs15092380
https://doi.org/10.3390/rs15092380
https://doi.org/10.48550/ARXIV.2408.06507
https://doi.org/10.48550/ARXIV.1711.01758
https://doi.org/10.48550/ARXIV.1711.01758
https://doi.org/10.1016/j.rse.2021.112772
https://doi.org/10.1016/j.rse.2021.112772
https://doi.org/10.48550/ARXIV.2007.08501
https://doi.org/10.1109/ICCV51070.2023.01302
https://doi.org/10.1109/ICCV51070.2023.01302
https://doi.org/10.1109/CVPR52733.2024.01393
https://doi.org/10.48550/ARXIV.2004.01658
https://doi.org/10.48550/ARXIV.2004.01658


Bibliography

[88] NVIDIA,Minkowski Engine, https://github.com/NVIDIA/MinkowskiEngine,
Jul. 2025.

[89] R. Adams and L. Bischof, “Seeded region growing,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 16, no. 6, pp. 641–647, Jun.
1994, ISSN: 01628828. DOI: 10.1109/34.295913.

[90] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward fea-
ture space analysis,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, no. 5, pp. 603–619, May 2002, ISSN: 01628828. DOI:
10.1109/34.1000236.

[91] T. Stegmüller, B. Bozorgtabar, A. Spahr, and J.-P. Thiran, ScoreNet: Learning
Non-Uniform Attention and Augmentation for Transformer-Based Histopatho-
logical Image Classification, 2022. DOI: 10.48550/ARXIV.2202.07570.

[92] H. Henniger, A. Huth, K. Frank, and F. J. Bohn, “Creating virtual forests
around the globe and analysing their state space,” en, Ecological Modelling,
vol. 483, p. 110 404, Sep. 2023, ISSN: 03043800. DOI: 10.1016/j.ecolmodel.
2023.110404.

[93] H. Weiser, J. Schäfer, L. Winiwarter, N. Krašovec, F. E. Fassnacht, and B.
Höfle, “Individual tree point clouds and tree measurements from multi-
platform laser scanning in German forests,” en, Earth System Science Data,
vol. 14, no. 7, pp. 2989–3012, Jul. 2022, ISSN: 1866-3516. DOI: 10.5194/essd-
14-2989-2022.

[94] J. Liu, D. Wang, H. Gong, C. Wang, J. Zhu, and D. Wang, Advancing the
Understanding of Fine-Grained 3D Forest Structures using Digital Cousins and
Simulation-to-Reality: Methods and Datasets, 2025. DOI: 10.48550/ARXIV.
2501.03637.

[95] X. Liang, H. Qi, X. Deng, et al., “ForestSemantic: a dataset for semantic
learning of forest from close-range sensing,” en, Geo-spatial Information
Science, vol. 28, no. 1, pp. 185–211, Jan. 2025, ISSN: 1009-5020, 1993-5153. DOI:
10.1080/10095020.2024.2313325.

[96] S. Puliti, G. Pearse, P. Surový, et al., FOR-instance: a UAV laser scanning
benchmark dataset for semantic and instance segmentation of individual trees,
2023. DOI: 10.48550/ARXIV.2309.01279.

[97] Tockner Andreas, J.-M. Burmeister, Gollob Christoph, Ritter Tim, and
Nothdurft Arne, LAUTx - Individual Tree Point Clouds from Austrian forest
Inventory plots, en, May 2022. DOI: 10.5281/ZENODO.6560111.

[98] K. Calders,H. Verbeeck, A. Burt, et al.,Terrestrial laser scanning dataWytham
Woods: individual trees and quantitative structure models (QSMs), en, Nov.
2022. DOI: 10.5281/ZENODO.7307955.

[99] J. Frey andZ. Schindler,DetailView repository, https://github.com/JulFrey/DetailView,
Jun. 2025.

[100] A. Goyal, H. Law, B. Liu, A. Newell, and J. Deng, Revisiting Point Cloud
Shape Classification with a Simple and Effective Baseline, 2021. DOI: 10.48550/
ARXIV.2106.05304.

82

https://doi.org/10.1109/34.295913
https://doi.org/10.1109/34.1000236
https://doi.org/10.48550/ARXIV.2202.07570
https://doi.org/10.1016/j.ecolmodel.2023.110404
https://doi.org/10.1016/j.ecolmodel.2023.110404
https://doi.org/10.5194/essd-14-2989-2022
https://doi.org/10.5194/essd-14-2989-2022
https://doi.org/10.48550/ARXIV.2501.03637
https://doi.org/10.48550/ARXIV.2501.03637
https://doi.org/10.1080/10095020.2024.2313325
https://doi.org/10.48550/ARXIV.2309.01279
https://doi.org/10.5281/ZENODO.6560111
https://doi.org/10.5281/ZENODO.7307955
https://doi.org/10.48550/ARXIV.2106.05304
https://doi.org/10.48550/ARXIV.2106.05304


Bibliography

[101] M. Hussain, YOLOv5, YOLOv8 and YOLOv10: The Go-To Detectors for Real-time
Vision, 2024. DOI: 10.48550/ARXIV.2407.02988.

[102] X. Zhai, A. Kolesnikov, N.Houlsby, and L. Beyer, Scaling Vision Transformers,
2021. DOI: 10.48550/ARXIV.2106.04560.

[103] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie, Class-Balanced Loss Based
on Effective Number of Samples, 2019. DOI: 10.48550/ARXIV.1901.05555.

[104] J.-H. Lee, D. Yoon, B. Ji, K. Kim, and S. Hwang, Rethinking Evaluation Proto-
cols of Visual Representations Learned via Self-supervised Learning, 2023. DOI:
10.48550/ARXIV.2304.03456.

[105] M. Marks, M. Knott, N. Kondapaneni, et al., A Closer Look at Benchmarking
Self-Supervised Pre-training with Image Classification, 2024. DOI: 10.48550/
ARXIV.2407.12210.

[106] D. Variš and O. Bojar, “Sequence Length is a Domain: Length-based Over-
fitting in Transformer Models,” 2021. DOI: 10.48550/ARXIV.2109.07276.

[107] M. Caron, H. Touvron, I. Misra, et al., Emerging Properties in Self-Supervised
Vision Transformers, 2021. DOI: 10.48550/ARXIV.2104.14294.

83

https://doi.org/10.48550/ARXIV.2407.02988
https://doi.org/10.48550/ARXIV.2106.04560
https://doi.org/10.48550/ARXIV.1901.05555
https://doi.org/10.48550/ARXIV.2304.03456
https://doi.org/10.48550/ARXIV.2407.12210
https://doi.org/10.48550/ARXIV.2407.12210
https://doi.org/10.48550/ARXIV.2109.07276
https://doi.org/10.48550/ARXIV.2104.14294




List of Figures

2.1 Tree species distribution of swiss forests based on stem count (thou-
sands) [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Principle of multiple return LiDAR systems. Figure taken from [37]. 7
2.3 Overview of the main tasks applied to point clouds for forest inven-

tory. Figure taken from [15]. . . . . . . . . . . . . . . . . . . . . . 9
2.4 Number of papers usingmachine learning and deep learningmeth-

ods on TLS forest point clouds over time. Figure from [15]. . . . . 10
2.5 Number of papers per task (section 2.3) on TLS forest point clouds

over time. Figure from [15]. . . . . . . . . . . . . . . . . . . . . . 10
2.6 A voxelized point cloud of a tree. Figure taken from [67]. . . . . . . 11

3.1 Flowchart of the research process. . . . . . . . . . . . . . . . . . . 16
3.2 Project schedule of this master’s thesis. . . . . . . . . . . . . . . . 17
3.3 Processing of a input point cloud of a tree of the pre-training dataset

in PointGPT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Flow of the input tokens in the PointGPT transformer. . . . . . . . 24
3.5 An example of a segmented ALS point cloud fromCantonNeuchâtel

used for the pre-training dataset. . . . . . . . . . . . . . . . . . . 27
3.6 Distribution of points per instance for tile 25655001212500. . . . . 28
3.7 The tree synthesis process in SimpleSynthTree. Figure taken from

[75]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.8 The Synforest simulation process. Figure taken from [76]. . . . . . 30
3.9 Tree species distribution in the post-pre-train dataset. . . . . . . . 31
3.10 Distribution of points per instance for the post-pre-train dataset. . 32
3.11 Summary chart of the FOR-Species20K dataset. Figure taken from

[77]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.12 Distribution of points per instance for the benchmark dataset. . . 35
3.13 Loss curves of DetailView on FOR-SPecies20K. . . . . . . . . . . . 36
3.14 Species overlap between post-pre-training and fine-tuning datasets. 37

4.1 Speedup investigation for parallel vs. sequential loading applied on
.laz point cloud files. . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 The applied point cloud transformations for augmentation purposes. 45
4.3 Comparison of class weighting strategies for the FOR-Species20K

dataset. The black dots are the effective class counts of the 33 classes
in the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

85



List of Figures

4.4 Comparison of the training and validation splits for the fine-tuning
dataset, with values expressed as percentages of the dataset. . . . 47

4.5 Pre-training: reconstruction loss on the training split. . . . . . . . 50
4.6 Pre-training: reconstruction loss on the validation split. . . . . . . 50
4.7 Pre-training: linear probing top 1. . . . . . . . . . . . . . . . . . . 51
4.8 Pre-training: linear probing top 5. . . . . . . . . . . . . . . . . . . 51
4.9 Pre-training gridsearch: reconstruction loss on the validation split. 52
4.10 Pre-training gridsearch: linear probing top 1. . . . . . . . . . . . . 53
4.11 Pre-training gridsearch: linear probing top 5. . . . . . . . . . . . . 53
4.12 Pre-training trials: reconstruction loss on the validation split. . . . 55
4.13 Pre-training trials: linear probing top 1. . . . . . . . . . . . . . . . 55
4.14 Divergence issue: reconstruction loss comparison between identi-

cal runs with and without AMP. . . . . . . . . . . . . . . . . . . . 57
4.15 Divergence issue: gradients norm. . . . . . . . . . . . . . . . . . . 57
4.16 Divergence issue: AMP scale. . . . . . . . . . . . . . . . . . . . . . 57
4.17 Post-pre-training: classification accuracy on the validation split. . 58
4.18 Post-pre-training: linear probing top 1. . . . . . . . . . . . . . . . 58
4.19 Post-pre-training: linear probing top 5. . . . . . . . . . . . . . . . 59
4.20 Fine-tuning: classification accuracy on the validation split. . . . . 60
4.21 Fine-tuning: F1 score on the validation split. . . . . . . . . . . . . 60
4.22 Fine-tuning: classification loss on the validation split. . . . . . . . 62
4.23 Fine-tuning: classification accuracy on the training split. . . . . . 62
4.24 Fine-tuning with adapters (PEFT): classification accuracy on the

validation split. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.25 Fine-tuning with adapters (PEFT): F1 score on the validation split. 63
4.26 Fine-tuning: classification accuracy on the validation split for mod-

els with different token sequence lengths. . . . . . . . . . . . . . . 65
4.27 Fine-tuning: classification accuracy on the validation split for dif-

ferent model S configurations. . . . . . . . . . . . . . . . . . . . . 66
4.28 Fine-tuning: F1 score on the validation split for different model S

configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.29 Best model: confusion matrix. . . . . . . . . . . . . . . . . . . . . 68
4.30 Best model: accuracy by species. . . . . . . . . . . . . . . . . . . . 69
4.31 Best model: accuracy by data type. . . . . . . . . . . . . . . . . . . 69
4.32 Best model: accuracy by tree height. . . . . . . . . . . . . . . . . . 69

86



List of Tables

2.1 Tree species distribution of swiss forests based on stem count (thou-
sands) [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Comparison of LiDAR platform characteristics. From [40], p.54,
adapted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Number of tree instances across point cloud tiles with filtering
threshold of 1024 points per instance. . . . . . . . . . . . . . . . . 28

3.2 SimpleSynthTree parameters used for synthetic tree generation
complementing the Neuchâtel dataset. . . . . . . . . . . . . . . . 29

3.3 Overview of the literature datasets used to expand the pre-training
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Performance of top-performing models on the FOR-species20K
benchmark dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Overview of datasets used in this study. . . . . . . . . . . . . . . . 37

4.1 Training speed comparison between full precision and mixed pre-
cision for distributed PointGPT pre-training using 4 GPUs (batch
size 128 per GPU, 512 total). . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Parameter counts across model configurations. . . . . . . . . . . . 43
4.3 Normalized class weight ranges for different balancing strategies

applied to the FOR-Species20K dataset. . . . . . . . . . . . . . . . 46
4.4 SSL linear probing performance ranges across vision task cate-

gories and datasets. From [105], summarized . . . . . . . . . . . . 48
4.5 Pre-training configurations. . . . . . . . . . . . . . . . . . . . . . 50
4.6 Gridsearch parameter space configuration. . . . . . . . . . . . . . 54
4.7 Post-pre-training configurations. . . . . . . . . . . . . . . . . . . . 58
4.8 Fine-tuning configurations. . . . . . . . . . . . . . . . . . . . . . 61
4.9 Performance comparison between TreeGPT and leading methods.

TreeGPT results are reported on the validation split of this work’s
dataset, while benchmark results are on the official FOR-Species20K
test split, limiting direct comparability. . . . . . . . . . . . . . . . 68

87





Listings

3.1 Tree species assignment algorithm in Python pseudocode for the
post-pre-train dataset. . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Preprocessing pipeline for point cloud normalization and sampling
in Python pseudocode. . . . . . . . . . . . . . . . . . . . . . . . . 40

89





Glossary

LiDAR Light Detection and Ranging. An active remote
sensing technology that measures distances by
emitting laser pulses and calculating the time-of-
flight for reflected signals to return to the sensor

point cloud A collection of data points in three-dimensional
space, where each point represents a specific lo-
cation defined by X, Y, and Z coordinates, often
including additional attributes such as intensity
and color

SSL Self-Supervised Learning. A machine learning
technique that enables training models on large
quantities of unlabeled data through various pre-
text tasks, allowing models to acquire general
knowledge that canbe transferred to downstream
tasks

ALS Airborne Laser Scanning. LiDAR systems that op-
erate above the forest canopy, typically mounted
onmanned aircraftflying at altitudes of hundreds
of meters to several kilometers

TLS Terrestrial Laser Scanning. Stationary ground-
based LiDAR systems that provide the highest
point densities and precision, operating from
fixed positions under the forest canopy

ULS Unmanned Laser Scanning. LiDAR systems car-
ried by unmanned aerial vehicles (UAVs/drones)
that can operate either under or above the forest
canopy

91



Glossary

MLS Mobile Laser Scanning. LiDAR systems thatmove
under the forest canopy, including ground-based
systems mounted on vehicles or handheld Per-
sonal Laser Scanners

FPS Farthest Point Sampling. A deterministic down-
sampling algorithm that iteratively selects points
to maximize spatial coverage by progressively
choosing points that maintain maximum dis-
tance from all previously selected points

PointGPT A transformer architecture that extends Gener-
ative Pre-trained Transformers to point clouds,
addressing disorder properties, low information
density, and gaps between generation and down-
stream tasks through auto-regressive generation

PointGST Point cloud Graph Spectral Tuning. A parameter-
efficient fine-tuning method that addresses to-
ken confusion in pre-trained point cloud mod-
els by shifting the adaptation process from spa-
tial coordinates to the spectral domain through
lightweight Point Cloud Spectral Adapters

transformer A neural network architecture based on atten-
tion mechanisms that has become dominant in
deep learning, particularly successful in natural
language processing and increasingly applied to
computer vision tasks

AMP Automatic Mixed Precision. A technique that au-
tomatically scales operations betweenfloat32 and
float16 precision to reduce computational load
while maintaining model performance

PEFT Parameter-Efficient Fine-Tuning. Adaptation
techniques that modify only a small subset of
parameters in pre-trainedmodels rather than up-
dating all model weights during downstream task
training

92



Glossary

RDP Relative Direction Prompts. Directional infor-
mation calculated from spatial relationships be-
tween point group centers, used in PointGPT to
provide the model with information about group
order and direction

APE Absolute Positional Encodings. Sinusoidal posi-
tional encodings added to point group centers to
provide the model with global structure informa-
tion about spatial ordering

CD Chamfer Distance. A metric that measures sim-
ilarity between two point clouds by quantifying
how well they align, calculated by finding the
closest point correspondences between clouds

DBH Diameter at Breast Height. A standard forestry
measurement of tree trunk diameter taken at 1.3
meters above ground level, commonly used for
forest inventory and biomass estimation

KNN K-Nearest Neighbors. An algorithm that identi-
fies the k closest points to a given point based
on a distance metric, commonly used for point
cloud neighborhood construction

Morton code A method for converting multi-dimensional co-
ordinates into a single number that preserves
spatial locality by interleaving the binary repre-
sentations of coordinate values

SOS Start of Sequence. A special token used during
pre-training to provide generative context at the
beginning of token sequences in transformer ar-
chitectures

CLS Classification token. A learnable token intro-
duced to pre-trainedmodels for downstream clas-
sification tasks, designed to encapsulate global
properties of the input useful for classification

93



Glossary

GFT Graph Fourier Transform. A mathematical trans-
formation that decomposes graph signals into or-
thogonal frequency components, enabling spec-
tral analysis of data defined on graph structures

PCSA Point Cloud Spectral Adapters. Lightweight adap-
tation modules that operate in the spectral do-
main to fine-tune pre-trained point cloud models
while keeping the majority of parameters frozen

TreeGPT The final model developed in this work, repre-
senting the best-performing PointGPT config-
uration (Model L) specifically adapted for tree
species classification from LiDAR point clouds

FOR-Species20K A benchmark dataset comprising 20,158 individ-
ual tree point clouds representing 33 species, de-
signed specifically for tree species classification
from proximal laser scanning data

OOM Out-of-Memory. An error that occurs when a pro-
gram attempts to use more memory than is avail-
able, commonly encountered in deep learning
when processing large batches or high-resolution
data that exceed GPUmemory capacity

94


	Introduction
	Context and opportunities
	Research problem
	Objectives and structure

	Background and related work
	Overview of swiss forests
	LiDAR technology
	Forest inventory from LiDAR point clouds
	Tree species classification from LiDAR point clouds
	Self-supervised learning
	Parameter-efficient fine-tuning

	Methodology
	Overall research design
	Project management
	Information sources
	Infrastructure and hardware
	Models
	PointGPT
	PointGST

	Data
	Custom datasets
	Literature dataset
	Benchmark dataset
	Dataset summary


	Results and discussion
	Pipelines implementation
	Preprocessing
	Training

	Training runs
	Overview
	Pre-training
	Post-pre-training
	Fine-tuning

	Best model

	Conclusions
	Bibliography
	List of Figures
	List of Tables
	Listings
	Glossary
	Glossary


